Entropy and Enthalpy Guided Notes

1) Define				
a) Entropy_	a) Entropy			
b) Enthalpy	b) Enthalpy			
c) Spontan	c) Spontaneous			
d) Non-spo	ntaneous			
2) There is a natural tendency for reaction to move to the side with <u>minimum</u> enthalpy				
Minimum enthalpy is the side with the heat term				
On a PE diagram, the tendency of minimum enthalpy favours the side that is Higher or lower on the graph.				
In an endothermic reaction (forward), min. enthalpy favours the <u>reactants</u> .				
In an exothermic reaction (forward), min. enthalpy favours the <u>products</u> .				
<u>Problems</u> Tell whether each of the following is <i>endothermic</i> or <i>exothermic</i> and state which has <i>minimum enthalpy</i> , the <i>reactants</i> or the <i>products</i> :				
a.	$PCl_{5(g)} \rightleftharpoons Cl_{2(g)} + PCl_{3(g)} \Delta H = 92.5 \text{ kJ}$			
	<u>endo</u> thermic and the <u>reactants</u> have <i>minimum enthalpy</i> .			
b	$2NH_{3(g)} + 92.4 \text{ kJ} \rightleftharpoons N_{2(g)} + 3H_{2(g)}$			
	<u>endo</u> thermic and the <u>reactants</u> have <i>minimum enthalpy</i> .			
с	$CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ}$			
	<u>exo</u> thermic and the <u>products</u> have <i>minimum enthalpy</i> .			
d.	$Cl_{2(g)} \rightleftharpoons Cl_{2(aq)} \qquad \Delta H = -25 \text{ kJ}$			
	<u>exo</u> thermic and the <u>products</u> have <i>minimum enthalpy</i> .			

3) There is a natural tendency for reaction to move to the side with <u>maximum</u> entropy

There is a natural tendency towards the side of the reaction with more or (less) order

List the phases by increasing entropy (lowest to highest)

solids < liquids < solutions < gases

The side of the reaction with more or less moles of gas has maximum entropy

In the following examples, the *entropy is increasing* (or the *products* have *greater entropy*):

1. There is a *gas* (or gases) on the *right*, when there are *no gases* on the *left* of the equation:

$$CaCO_{3(s)} + 2 HCl_{(aq)} \rightleftharpoons CaCl_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$$

a gas is formed on the right.

2. When there are *gases on both sides*, the *products* have *greater entropy* when there are *more moles of gas on the right* (add up coefficients of gases on left and right.):

Problems

For each of the following, decide whether the *reactants* or the *products* have *greater entropy*:

a) I_{2(s)} ≈ I_{2(aq)} The <u>products</u> have greater entropy.
b) 2NH_{3(g)} ≈ N_{2(g)} + 3H_{2(g)} The <u>products</u> have greater entropy.
c) NH_{3(g)} ≈ NH_{3(aq)} The <u>reactants</u> have greater entropy.
d) CO_(g) + Cl_{2(g)} ≈ COCl_{2(g)} The <u>reactants</u> have greater entropy.

	The	products	have greater entropy
e)	MgCO _{3(s)} +	- 2HCl _(aq) ₹	$MgCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}$

4) In nature there is a natural tendency for a reaction to favour the side with

<u>minimum</u> enthalpy and <u>maximum</u> entropy.

5) Choose one of the following

<u>does not occur-</u>non-spontaneous or <u>goes to completion</u>- spontaneous or <u>goes to</u> <u>equilibrium</u>

a) If min. enthalpy and maximum entropy both favour the products

- the forward reaction will <u>go to completion</u>

-the reverse reaction will <u>not occur</u>

b) If min. enthalpy and maximum entropy both favour the reactants

- the forward reaction will <u>not occur</u>

-the reverse reaction will <u>go to completion</u>

c) If min. enthalpy and maximum entropy both favour the opposite directions

- the forward reaction will ______go to equilibrium_____

-the reverse reaction will <u>go to equilibrium</u>

Problems

For each of the following reactions decide which has *minimum enthalpy* (reactants or products), which has *maximum entropy* (reactants or products), and if the reactants are mixed, what will happen? (go to completion/ reach a state of equilibrium/not occur at all).

a) $PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{5(g)}$; $\Delta H = -92.5 \text{ kJ}$

The **products** has/have minimum enthalpy.

The <u>reactants</u> has/have maximum entropy.

If PCl₃ and Cl₂ are put together, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)

<u>reach a state of equilibrium</u>

<u>reach a state of equilibrium</u>

Self Test

1.	What is meant by <i>enthalpy?</i>			
2.	What is meant by <i>entropy?</i>			
3.	In an <i>endothermic reaction</i> , the <i>minimum enthalpy</i> .	<u>reactants</u>	have	
4.	In an <i>exothermic reaction</i> , the <i>minimum enthalpy</i> .	products	have	
5.	Arrange the following in order from a) liquids b) gases c) aqueous soluti	<i>least entropy</i> to <i>greatest</i> tons d) solids	entropy:	
	<u>solids < liquids < </u>	<u>aqueous solutions < ga</u>	<u>ses</u>	
6.	There is a natural tendency toward	<u>minimum</u>		enthalpy
	and <u>maximum</u>	entropy.		
7.	A process in which <i>entropy increase</i> go to completion reach a state of equilibrium/no	es and <i>enthalpy decreases</i> ot occur at all)	s will	
8.	A process in which <i>entropy increase</i> (go to completion reach a state of equilibrium)	es and <i>enthalpy increases</i> ot occur at all)	s will	
9.	A process in which <i>entropy decreases</i> and <i>enthalpy decreases</i> will (go to completion reach a state of equilibrium not occur at all)			
10.	A process in which <i>entropy decreases</i> and <i>enthalpy increases</i> will (go to completion/ reach a state of equilibrium/not occur at all)			
11.	A process in which <i>both the enthalp</i>	y and entropy trends fav	<i>your reactants</i> will	
	(go to completion/ reach a state of equilibrium no	ot occur at all)		
12.	A process in which <i>both the enthalp</i>	y and entropy trends fav	<i>our products</i> will	
	go to completion reach a state of equilibrium/no	ot occur at all)		
13.	A process in which <i>the enthalpy and</i> (go to completion reach a state of equilibrium)	<i>d entropy trends oppose</i> ot occur at all)	each other will	

14. In each of the following, state which has the *maximum entropy*, (reactants or products)

a)	$C_{(s)} + O_{2(g)} \rightleftharpoons CO_{2(g)}$	<u>products</u>
b)	$2Al(s) + 6HCl_{(aq)} \rightleftharpoons 3H_{2(g)} + 2AlCl_{3(aq)}$	<u>products</u>
c)	$2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$	<u>products</u>
d)	$HCl_{(g)} \rightleftharpoons H^+_{(aq)} + Cl^{(aq)}$	<u>reactants</u>
e)	$KOH_{(s)} \rightleftharpoons K^+_{(aq)} + OH^{(aq)}$	products

15. For each of the following reactions decide which has *minimum enthalpy* (reactants or products), which has *maximum entropy* (reactants or products), and if the reactants are mixed, what will happen? (go to completion/ reach a state of equilibrium/not occur at all). Assume there is sufficient activation energy to initiate any spontaneous reaction.

 $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$; $\Delta H = +92.5 \text{ kJ}$ a) The <u>reactants</u> has/have minimum enthalpy. The ______ has/havemaximum entropy. If PCIs is put in a flask what should happen? (go to completion/ reach a state of equilibrium/not occur at all) $2NO_{(g)} + O_{2(g)} \rightleftharpoons 2NO_{2(g)} + energy$ b) The products has/have minimum enthalpy. The <u>reactants</u> has/have maximum entropy. If NO and O₂ were put in a flask, what should happen?(go to completion/reach a state of equilibrium ot occur at all) c) $Na_2CO_{3(s)} + 2HCl_{(aq)} \rightleftharpoons 2NaCl_{(aq)} + CO_{2(g)} + H_2O_{(l)} + 27.7 \text{ kJ}$ The products has/have minimum enthalpy. The products has/have maximum entropy. If $Na_2CO_{3(s)}$ + 2HCl_(aq) were put in a flask, what should happen? go to completion/reach a state of equilibrium/not occur at all)

The <u>reactants</u> has/have minimum enthalpy.

The products has/have maximum entropy.

If Pb(NO₃)₂ was put in a flask, what should happen?(go to completion/ reach a state of equilibrium/not occur at all)

16. Reactions which result in a/an <u>decrease</u> in enthalpy and a/an

in entropy will *always* be **spontaneous**.

17. Reactions which result in a/an <u>increase</u> in enthalpy and a/an

<u>decrease</u> in entropy will *always* be **non-spontaneous**.