Edvantage Science AP Chemistry 2
Chapter 5
Traffic Light Study Guide

Section	Page	Learning Outcome	Red	Amber	Green
5.1	264	Define and provide an example of an Arrhenius acid and an Arrhenius base.	\bigcirc	\bigcirc	\bigcirc
	264	Determine the products of an Arrhenius acid-base reaction.	\bigcirc	0	0
	$\begin{array}{\|c} \hline 265 \\ -266 \end{array}$	Define and provide an example of a Brønsted-Lowry acid and a Brønsted-Lowry base.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 266 \\ -267 \end{array}$	Determine the products of a Brønsted-Lowry acid-base reaction and identify its conjugate acid-base pairs.	\bigcirc	\bigcirc	\bigcirc
	267	Determine a Brønsted-Lowry acid's conjugate base (and vice-versa).	0	\bigcirc	0
	268	Define and provide an example of an amphiprotic species.	\bigcirc	\bigcirc	\bigcirc
5.2	$\begin{array}{\|r\|} \hline 273 \\ -274 \end{array}$	Define and provide an example of a strong acid and a weak acid.	\bigcirc	\bigcirc	\bigcirc
	274	Define and provide an example of a strong Bronsted-Lowry base and a weak Brønsted-Lowry base.	O	\bigcirc	\bigcirc
	275	Write the acid ionization equation and the acid ionization expression for any given acid.	O	O	\bigcirc
	276	Write the base ionization equation and the base ionization expression for any given base.	0	\bigcirc	\bigcirc
	277	Find the K_{a} value of an acid in the K_{a} table.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 277 \\ -278 \end{array}$	Relate the strength of an acid to the strength of its conjugate base and vice-versa.	\bigcirc	\bigcirc	\bigcirc
	279	Describe and explain periodic trends in binary acid strength.	0	\bigcirc	\bigcirc
	280	Cite two factors that influence the strength of ternary acids.	\bigcirc	\bigcirc	\bigcirc
	280	Cite two factors that influence the strength of carboxylic acids.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline 282 \\ -283 \end{gathered}$	Determine whether the forward or reverse reaction is favoured in any Brønsted-Lowry acid-base equilibrium.	\bigcirc	\bigcirc	\bigcirc
	284	Describe the levelling effect.	\bigcirc	\bigcirc	\bigcirc
5.3	289	Provide the chemical equation for the autoionization of water, the K_{w} expression and the value of K_{w} at room temp.	\bigcirc	\bigcirc	\bigcirc
	290	Define acidic, basic, and neutral in terms of the relative concentrations of H^{+}and OH^{-}.	\bigcirc	\bigcirc	\bigcirc
	291	Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in strong acid and strong base solutions.	0	\bigcirc	\bigcirc
	292	Calculate the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$that result from mixing particular amounts of a strong acid and a strong base.	\bigcirc	\bigcirc	\bigcirc

Edvantage Science AP Chemistry 2
Chapter 5
Traffic Light Study Guide

Section	Page	Learning Outcome	Red	Amber	Green
5.4	$\begin{array}{\|c\|} \hline 296 \\ -297 \end{array}$	Calculate a solution's $p H$ from its $\left[\mathrm{H}^{+}\right]$, taking care to express the pH to the appropriate number of sig.figs.	\bigcirc	\bigcirc	\bigcirc
	297	Cite two ways to measure a solution's pH .	\bigcirc	\bigcirc	\bigcirc
	298	Calculate a solution's $\left[\mathrm{H}^{+}\right]$from its pH , taking care to express the $\left[\mathrm{H}^{+}\right]$to the appropriate number of sig.figs.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 299 \\ -302 \end{array}$	Interconvert $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH .	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 300 \\ -301 \\ \hline \end{array}$	Identify an aqueous solution at room temperature as being acidic, basic (alkaline), or neutral, from its pH or its pOH .	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 303 \\ -305 \end{array}$	Calculate the pH and pOH that result from mixing particular amounts of a strong acid and a strong base.	\bigcirc	\bigcirc	\bigcirc
5.5	$\begin{array}{\|c} 312 \\ -314 \end{array}$	Calculate an acid solution's $\left[\mathrm{H}^{+}\right]$from the acid's K_{a} and the (initial) [acid].	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 315 \\ -316 \\ \hline \end{array}$	Calculate an acid solution's concentration from the acid's K_{a} and the solution's pH .	\bigcirc	\bigcirc	\bigcirc
	317	Calculate an acid's K_{a} from the acid solution's concentration and its pH .	\bigcirc	\bigcirc	\bigcirc
	318	Calculate the K_{b} of a base from the K_{a} of its conjugate acid and K_{w}.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c} \hline 319 \\ -320 \end{array}$	Calculate a base solution's $\left[\mathrm{OH}^{-}\right]$from the base's K_{b} and the (initial) [base].	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 321 \\ -322 \end{array}$	Calculate a base solution's concentration from the base's K_{b} and the solution's pH .	\bigcirc	\bigcirc	\bigcirc
	323	Calculate a base's K_{b} from the base solution's concentration and its pH .	\bigcirc	\bigcirc	\bigcirc

