Edvantage Science AP Chemistry 2
Chapter 6
Traffic Light Study Guide

Section	Page	Learning Outcome	Red	Amber	Green
6.1	332	Define hydrolysis.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 333 \\ -342 \end{gathered}$	Identify any given salt as neutral, acidic, or basic.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 333 \\ -342 \end{gathered}$	Identify the ion and provide the hydrolysis reaction responsible for the acidity or alkalinity of any salt.	\bigcirc	\bigcirc	\bigcirc
	334	Calculate the pH of a basic salt solution.	\bigcirc	\bigcirc	\bigcirc
	336	Calculate the pH of an acidic salt solution.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 339 \\ -340 \end{gathered}$	Determine whether an amphoteric salt, in particular, is acidic or basic. A compound that is amphoteric contains or consists of two independent species, one that is an acid and one that is a base.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 341 \\ -342 \end{gathered}$	Determine whether an amphiprotic ion is acidic or basic.	\bigcirc	\bigcirc	\bigcirc
6.2	348	Define a buffer.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{r} 349 \\ -350 \\ \hline \end{array}$	Describe the composition of a buffer.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 350 \\ -352 \end{gathered}$	Describe and explain how an acidic buffer works.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline 354 \\ -356 \end{gathered}$	Describe and explain how a basic buffer works.	\bigcirc	\bigcirc	\bigcirc
	357	(Extension) State the Henderson-Hasselbalch equation.	\bigcirc	\bigcirc	\bigcirc
	357	Define buffer capacity. State and explain what it depends upon.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 357 \\ -358 \end{gathered}$	Given the desired pH of a buffer, describe how to prepare it.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 359 \\ -360 \end{gathered}$	Write the chemical equation for the hemoglobin/oxyhemoglobin equilibrium present in our blood and explain why a steady pH is critical to this equilibrium.	\bigcirc	\bigcirc	\bigcirc
	360	Write the chemical equation for one buffer system that helps keep our blood pH relatively constant.	\bigcirc	\bigcirc	\bigcirc
6.3	368	Supply 3 criteria that a reaction must satisfy to be used for a titration.	\bigcirc	\bigcirc	\bigcirc
	368	Define the equivalence point of an acid-base titration.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline 369 \\ -370 \\ \hline \end{gathered}$	Describe an acid-base titration using the terms, burette, pipette, flask, titrant, standard solution, analyte, indicator, and transition point.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline 370 \\ -371 \\ \hline \end{gathered}$	List 4 properties of a primary standard, state its purpose, and provide an example of an acidic and a basic primary standard.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} 372 \\ -376 \end{gathered}$	Use titration data to calculate concentration, volume, or molar mass.	\bigcirc	\bigcirc	\bigcirc
	$\begin{gathered} \hline 377 \\ -378 \\ \hline \end{gathered}$	Use data from the titration of an impure acid or base to calculate the acid or base's percent purity.	\bigcirc	\bigcirc	\bigcirc

For more support in AP Chemistry 2, go to edvantagescience.com

Chapter 6
Traffic Light Study Guide

Section	Page	Learning Outcome	Red	Amber	Green
6.4	$\begin{gathered} \hline 385 \\ -388 \end{gathered}$	Describe how acid-base indicators work.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 386 \\ -387 \end{array}$	Calculate an indicator's K_{a} and state how to choose a suitable indicator for a titration.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 388 \\ -389 \\ \hline \end{array}$	Determine the colour of a mixture of indicators in a solution of given pH (and vice-versa).	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 391 \\ -394 \\ \hline \end{array}$	Calculate the key points of a strong acid - strong base titration (initial, $1 / 2$ equiv. pt., equiv. pt., \& excess titrant) and draw its curve.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 395 \\ -401 \end{array}$	Calculate the key points of a weak acid - strong base titration (initial, $1 / 2$ equiv. pt., equiv. pt., \& excess titrant) and draw its curve.	\bigcirc	\bigcirc	\bigcirc
	401	Describe and explain the differences between strong acid-strong base titration curves and weak acid-strong base titration curves.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 403 \\ -407 \\ \hline \end{array}$	Calculate the key points of a weak base - strong acid titration (initial, $1 / 2$ equiv. pt., equiv. pt., \& excess titrant) and draw its curve.	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & 391, \\ & 395, \\ & 403 \\ & \hline \end{aligned}$	Write formula and ionic equations for neutralization reactions.	\bigcirc	\bigcirc	\bigcirc
6.5	$\begin{array}{\|c\|} \hline 415 \\ -416 \\ \hline \end{array}$	Describe the reactions of metal oxides with water. Identify a metal oxide as being a basic anhydride, an acidic anhydride or amphoteric.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 417 \\ -418 \\ \hline \end{array}$	Describe the reactions of non-metal oxides with water. Describe the general periodic trend pertaining to non-metal oxides.	\bigcirc	\bigcirc	\bigcirc
	$\begin{array}{\|c\|} \hline 419 \\ -423 \end{array}$	Outline the causes and consequences of acid rain, citing at least two chemical reactions involved.	\bigcirc	\bigcirc	\bigcirc

