

Edvantage Science AP Chemistry 2 **Chapter 6** Traffic Light Study Guide

Section	Page	Learning Outcome	Red	Amber	Green
6.1	332	Define hydrolysis.	0	0	0
	333 - 342	Identify any given salt as neutral, acidic, or basic.	0	0	0
	333 - 342	Identify the ion and provide the hydrolysis reaction responsible for the acidity or alkalinity of any salt.	0	0	0
	334	Calculate the pH of a basic salt solution.	0	0	0
	336	Calculate the pH of an acidic salt solution.	0	0	0
	339 - 340	Determine whether an <i>amphoteric salt</i> , in particular, is acidic or basic. A compound that is <i>amphoteric</i> contains or consists of two independent species, one that is an acid and one that is a base.	0	0	0
	341 - 342	Determine whether an <i>amphiprotic ion</i> is acidic or basic.	0	0	0
6.2	348	Define a <i>buffer</i> .	0	0	0
	349 - 350	Describe the composition of a buffer.	0	0	0
	350 - 352	Describe and explain how an acidic buffer works.	0	0	0
	354 - 356	Describe and explain how a basic buffer works.	0	0	0
	357	(Extension) State the Henderson-Hasselbalch equation.	0	0	0
	357	Define <i>buffer capacity</i> . State and explain what it depends upon.	0	0	0
	357 - 358	Given the desired pH of a buffer, describe how to prepare it.	0	0	0
	359 - 360	Write the chemical equation for the <i>hemoglobin/oxyhemoglobin</i> equilibrium present in our blood and explain why a steady pH is critical to this equilibrium.	0	0	0
	360	Write the chemical equation for one buffer system that helps keep our blood pH relatively constant.	0	0	0
6.3	368	Supply 3 criteria that a reaction must satisfy to be used for a <i>titration</i> .	0	0	0
	368	Define the <i>equivalence point</i> of an acid-base titration.	0	0	0
	369 - 370	Describe an acid-base titration using the terms, <i>burette</i> , <i>pipette</i> , <i>flask</i> , <i>titrant</i> , <i>standard solution</i> , <i>analyte</i> , <i>indicator</i> , and <i>transition point</i> .	0	0	0
	370 - 371	List 4 properties of a <i>primary standard</i> , state its purpose, and provide an example of an acidic and a basic primary standard.	0	0	0
	372 - 376	Use titration data to calculate concentration, volume, or molar mass.	0	0	0
	377 - 378	Use data from the titration of an impure acid or base to calculate the acid or base's percent purity.	0	0	0

For more support in AP Chemistry 2, go to edvantagescience.com

Section	Page	Learning Outcome	Red	Amber	Green
6.4	385 - 388	Describe how acid-base indicators work.	0	0	0
	386 - 387	Calculate an indicator's K_a and state how to choose a suitable indicator for a titration.	0	0	0
	388 - 389	Determine the colour of a mixture of indicators in a solution of given pH (and vice-versa).	0	0	0
	391 - 394	Calculate the key points of a strong acid – strong base titration (initial, ½ equiv. pt., equiv. pt., & excess titrant) and draw its curve.	0	0	0
	395 - 401	Calculate the key points of a weak acid – strong base titration (initial, $\frac{1}{2}$ equiv. pt., equiv. pt., & excess titrant) and draw its curve.	0	0	0
	401	Describe and explain the differences between strong acid-strong base titration curves and weak acid-strong base titration curves.	0	0	0
	403 - 407	Calculate the key points of a weak base – strong acid titration (initial, ½ equiv. pt., equiv. pt., & excess titrant) and draw its curve.	0	0	0
	391, 395, 403	Write formula and ionic equations for neutralization reactions.	0	0	0
6.5	415 - 416	Describe the reactions of metal oxides with water. Identify a metal oxide as being a <i>basic anhydride</i> , an <i>acidic anhydride</i> or <i>amphoteric</i> .	0	0	0
	417 - 418	Describe the reactions of non-metal oxides with water. Describe the general periodic trend pertaining to non-metal oxides.	0	0	0
	419 - 423	Outline the causes and consequences of <i>acid rain</i> , citing at least two chemical reactions involved.	0	0	0