Covalent Bonding

Mike Wang Jerry Wang John Chen

What is Covalent Bonds?

Lewis Diagram

Lewis Electron-Dot Formulas

He:

:Ne:

..

. .

..

:Xe:

..

..

F

..

S::CI::Ar:

..

..

•Sb: 'Te::

•As: 'Se: Br: Kr:

• Bi: •Po: : At: :Rn:

P

	1		
н•			
Li•	Be•	в.	·ċ·
Na•	Mg.	٨ŀ	• Śi •
ĸ٠	ċa•	Ga	•Ge•
Rb•	śr•	١'n•	•Sn•
Cs•	Ba•	٣i	•Pb•
Fr•	Ra•		

Lewis Electron-Dot Formulas

- 1. Calculate the total number of valence electrons if it is a polyatomic anion, add the charge in; if it is a polyatomic cation, subtract the charge
- 2. Draw the skeleton structure the central atom is typically the least electronegative atom - connect the rest of the atoms with single bonds
- 3. Distribute the electrons to the atoms surrounding the central atom/atoms to satisfy the octet rule
- 4. Distribute the remaining electrons as pairs to the central atom/atoms *if there are fewer* than 8 e⁻ on a central atom, this suggests a double or triple bond!

Non-polar or polar?

INCREASING ELECTRONEGATIVITY

100 - 13													-				
1 H Hydrigon 1,00794																	2 He Mature 4.003
3	4	E.										5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94L	Boty Board 9.012182											Basis 10.851	Cation 12.0107	Nikopen 14.00674	Oucess 15,9994	Plainter 18,9984032	5000 20.1797
11	12											13	14	15	16	17	18
Na 308400 22,0000770	Mg 24,3050			vi. – 1941. – 19			80 T-0-114					Al 40,000,000 26,981538	Si 54cm 28.0855	P Posphore 30.973761	Salter 32.066	Cl Official 35.4527	Ar Appn 30.948
19	20	21	22	23	24	25	26	27	28	29	- 30	31	32	33	34	35	36
K Presson 30.0083	Ca falcium 40.078	Sc Scardain 44.955910	Ti Itanian 47.867	Vunsten 50.9415	Crumium 51,9961	Mn Marganose 54.938049	Fe sa sa	Co Column 58,933200	Ni Notit 58.4954	Cu Copper 63.546	Zn 65,39	Ga Gatant 69,723	Germanian 72,61	As Atomic M.92160	Selenieri T8.96	Br Feemine 79.904	Kr Krypon 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Babalarn 85.4078	Streamer 87.62	Y Yn 568 88,90585	Zr 20000000 91.224	Nb Notium 92.90638	Mo Stobbdenen 95,94	Tc Technetism (98)	Ru Rationium 101.07	Rh Rheatines 102, 90550	Pd Poladum 105.42	Ag 5864 167.8682	Cd Cadenum 112,411	In Indian 114,818	Sn 118,710	Sb Antonior 121,760	Tellution. 127.60	I iodew 126.90447	Xee Xeena 131,29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Column 132.90545	Ba Barius 137,327	La Lanthanan 138.9055	Hf Halinare 178,49	Ta Tembei 180,9479	W Isagatere 183.84	Re Risenan 186.207	Os 0mmm 190.23	Ir ^{100m} 192.217	Pt Plainer 195.078	Au Gai4 196.96655	Hg Menagy 200,59	TI Tation 104,3833	Pb 1.ral 207.2	Bi Bonah 208.93033	Po Noticiant (209)	At (210)	Rn Rates (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	10 h 1000 k 12			9660.08t
Fr runditati (223)	Ra Radiani (226)	Actinian (227)	Rf Rothenfordnam (261)	Db Datestani (262)	Saltorpus (263)	Bh Bolarisan (262)	Hs History (268)	Mt Memorium (266)	(269)	(272)	(277)						s

NCREASING ELECTRONEGATIVITY

Non-polar

Difference of electronegativity (0~0.5)

Polar

Difference of electronegativity (0.5~1.7)

Bond length

Bond length or bond distance is the average distance between nuclei of two bonded atoms in a molecule. It is a transferable property of a bond between atoms of fixed types, relatively independent of the rest of the molecule.

Bond energy

The bond energy is a measure of the amount of energy needed to break apart one mole of covalently bonded gases.

Atom Potential Energy vs. Internuclear Distance

Questions

- 1. Construct Lewis Diagram
 - a. CH₃Cl b. PH₃ c. SiF₄ d. PO₄³⁻ e. CIO_4^{-1} f. CO_3^{-2-1}

Solutions:

2. Calculate the Formal Charge

a. $CH_{3}CI$ b. PH_{3} c. SiF_{4} d. PO_{4}^{3-} e. CIO_{4}^{-} f. CO_{3}^{2-}

D $FC = V - N - \frac{-}{2}$

Solutions:

a. All zero
b. All zero
c. All zero
d. P = +1
e. CI = +3
f. C = 0

3. Which bond Is More Polar?

a. C-N or C-O

- b. H-Cl or H-Br
- c. S-O or S-Br
- d. H-S or H-O
- e. P-Br or S-Br

н 2.1		Pauling Electronegativity Values													He		
Li 1.0	Be 1.6											В 2.0	С 2.5	N 3.0	0 3.5	F 4.0	Ne
Na 0.9	Mg 1.3											Al 1.5	Si 1.9	Р 2.2	\$ 2.6	C1 3.0	Ar
К 0.8	Ca 1.0	Sc 1.4	Ti 1.5	V 1.6	Cr 1.7	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.8	Ge 2.0	As 2.2	Se 2.6	Br 2.8	Kr
Rb 0.8	Sr 0.9	Y 1.2	Zr 1.3	Nb 1.6	M o 2.2	Тс 1.9	Ru 2.2	Rh 2.3	Pd 2.2	Ag 1.9	Cd 1.7	In 1.8	Sn 2.0	Sb 2.1	Te 2.1	I 2.5	Xe

Charles E. Sundin, University of Wisconsin-Platteville

Solutions:

- a. C-O
- b. H-Cl
- c. S-0
- d. H-O
- e. P-Br

Challenging Question

How to determine the relationship between type of bonds and the bond strength?

EXPLANATION OF MISCONCEPTIONS

When two electrons are sharing between two atoms to form a covalent bond, it is called a single bond. For example, one Cl2 molecule has one single bond. An O2 molecule has one double bond of 4 shared electrons.

A single bond is represented by a single dash between atoms.

COMMON BONDS

 CI-CI
 O=O
 N≡N

 F-F
 O=C=O
 N

Normally, we think that if two atoms has an electronegativity higher than 1.7 than they would form a ionic bond and it they have a different electronegativity less than 1.7, then they will form a covalent bond.

- Not all molecules that have covalent bonds are nonpolar.
- Not all chemical bonds between a metal and a nonmetal are ionic bonds. For example, (AICI3) has covalent bonds.

