Electrochemical Cells

Demonstration (Cu/Zn Cell)

Definitions

<u>Electrochemical cell</u> – A device which converts chemical energy into electrical energy <u>Electrode</u> – A conductor (usually a metal) at which a half-cell reaction.

(oxidation or reduction) occurs

<u>Anode</u> - The electrode at which <u>oxidation</u> occurs. (A & O are both vowels) <u>LEOA</u> (label the anode in the diagram above)

<u>Cathode</u> – The electrode at which <u>reduction</u> occurs. (R & C are both consonants) <u>GERC</u> (Label the anode in the diagram above)

Half-cell reactions

Anode - Oxidation half-rx

 $Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$

Metal atoms are changed to + ions. Metal dissolves and <u>anode loses mass</u> as the cell operates.

Cathode - Reduction half-rx

 $Cu^{2+} + 2e^{-} \rightarrow Cu$

+ ions are changed to metal atoms. New metal is formed so the cathode gains mass.

-Since the anode loses e⁻'s, (LEOA) and the cathode gains e⁻'s (GERC)

-Electrons flow from the anode toward the cathode in the wire (conducting solid)

Flow of lons in the salt bridge

-Salt bridge contains any electrolyte (conducting solution)

Identifying the anode and cathode

- Look at the **reduction table**
- All half-rx's are reversible (can go forward or backward)
- All are written as reductions (GERC)
- Their reverse would be **oxidations** (LEOA)
- The half-rx with the greater potential to be reduced is **higher** on the table
- (higher reduction potential E°)

So the higher half-rx is the cathode (HIC)

(Notice $Cu^{2^+} + 2e^- \rightarrow Cu$ is **higher** than $Zn^{2^+} + 2e^- \rightarrow Zn$ so Cu gets to be the **cathode**) Also notice that the **Anode** reaction Is **Reversed** (AIR)

(Anode rx: $Zn \rightarrow Zn^{2+} + 2e^{-}$)

Question. Fill in the following table. Use you	ur reduction table:
--	---------------------

Metal/ion	Metal/ion	Cathode (HIC)	Cathode Half-rx	Anode	Anode (AIR) Half-rx
Ag/Ag⁺	Fe/Fe ²⁺	Ag (higher)	Ag⁺ + e⁻ → Ag	Fe (lower)	$Fe \rightarrow Fe^{2+} + 2e^{-}$
Zn/Zn ²⁺	Pb/Pb ²⁺				
Ni/Ni ²⁺	AI/AI ³⁺				
Au/Au ³⁺	Ag/Ag⁺				
Mg/Mg ²⁺	H_2/H^+				
Co/Co ²⁺	Sn/Sn ²⁺				

Summary of Electrochemical Cells (ECC's) so far...

- Electrochemical cells convert _____ 1) energy into energy.
- 2) is the electrode where oxidation occurs.
- 3) Electrons are _____ at the anode.
- 4) is the electrode where reduction occurs.
- 5) In the half-rx at the cathode, e^{-t}s are on the _____ side of the equation.
- 6) Electrons flow from the _____ toward the _____ in the _____.
- 7) Cations ((+) ions) flow from the _____ beaker toward the ______ beaker through the ______.
 8) Anions ((-) ions flow from the ______ beaker through the ______.
- 9) The higher half-rx on the table is the one for the _____ and is not reversed.
- 10) The lower half-rx on the table is the one for the _____ and is reversed.
- 11) Electrons do not travel through the _____, only through the _____
- 12) Ions (cations & anions) do not travel through the wire but only through the ______.
- 13) The salt bridge can contain any
- 14) The anode will _____(gains/loses) mass as it is _____(oxidized/reduced).
 15) The cathode will _____ mass as it is _____(oxidized/reduced).

Read SW p. 215 - 217 in SW. Ex 34 a-e & 35 a-e p.217 SW.

Standard reduction potentials and voltages

Voltage – The tendency for e's to flow in an electrochemical cell. (Note: a cell may have a high voltage even if no e⁻'s are flowing. It is the tendency (or potential) for e⁻'s to flow. -Can also be defined as the potential energy per coulomb. (Where 1C = the

charge carried by 6.25×10^{18} e⁻) **1 Volt = 1 Joule/Coulomb**

Reduction potential of half-cells

-The tendency of a half-cell to be reduced. (take e⁻'s) Voltage only depends on the difference in potentials not the absolute potentials.

	The <u>voltage</u> of a cell depends only on the <u>differen</u> in reduction potentials of the two half-cells.			
e.g.)	Mrs. A	\$ before buying calculator \$2000 \$50	\$ after buying calculator \$1980 \$30	Difference \$20 \$20

-Both people spent \$20 on the calculator.

-Relative potentials of half-cells can only be determined by connecting with other half-cells and reading the voltage.

E.g.) How good a basketball team is can only be determined by playing with other teams and looking at points (scores).

-The standard half-cell acts as an anode (LEOA) or cathode (GERC) depending on what it is connected to: For example, when the standard half-cell is connected to the Ag/Ag^{+} half-cell.

-From this we can see that the E° for the Ag/Ag⁺ half-cell must be 0.80 V **different** than that of the standard half-cell. Since the Ag/Ag⁺ is the one which is reduced, we say it has a higher reduction potential than the standard. Therefore the reduction potential of the of Ag/Ag⁺ half-cell is +0.80 V.

Another example:

The standard (H_2/H^+) half-cell is connected to the Ni/Ni²⁺ half-cell.

-Electrons are found to flow away from the nickel toward the H_2/H^+ half-cell and the voltage (at 25 °C, 101.3 Kpa & 1.0 M solutions) is found to be 0.26 volts.

Give the: Cathode Half-rx: _____ Anode Half-rx: _____ Determine the E^o for the Ni/Ni²⁺ half cell: ____

Now look at **Standard Reduction Table**. Notice: -all half-rx's are written as **reductions**

-The E° is the standard reduction potential for the species on the left side.

Eg) Of the following combinations, find the one which gives the highest voltage?

- a) Ag^{+}/Ag with Cu^{2+}/Cu
- b) Pb^{2+}/Pb with Ni⁺/Ni
- c) Ag⁺/Ag with Pb⁺/Pb
- d) Au³⁺/Au with Ni²⁺/Ni

-Which combo gives the lowest voltage? _____

Using the reduction table to find the initial voltage of ECC's at standard state

- 1) Find the two metals on the reduction table. Higher one is the cathode. (HIC)
- Write the cathode half-rx as is on the table (cathode reduction) Include the reduction potential (E°) beside it.
- Reverse the anode reaction (AIR) (anode → oxidation) Reverse the sign on the E^o (If (+) → (-) | If (-) → (+))
- 4) **Multiply** half-rx's by factors that will make **e**'s **cancel**. **DON'T** multiply the E^o's by these factors.
- 5) Add up half-rx's to get overall redox reaction.
- 6) Add up E°'s (as you have written them) to get the initial voltage of the cell.

Example:

A cell is constructed using Nickel metal and	1M nickel (II) nitrate	along with Fe metal and
1M Iron (II) nitrate.		-

a)	Write the equation for the half-rx at the cathode (with the E°)
----	---	-------------	---

b) Write the equation for the half-rx at the **anode** (with the E^o)

c) Write the balanced equation for the overall reaction (with the E^o)

d) What is the initial cell voltage? _____V

Another example:

A cell is constructed using aluminum metal, $1M AI(NO_3)_3$ and lead metal with $1M Pb(NO_3)_2$. Use the method in the last example to write the overall redox reaction and find the initial cell voltage.

Overall redox reaction _____

Initial cell voltage: ______volts.

Example

A student has 3 metals: Ag, Zn and Cu; three solutions: $AgNO_3$, $Zn(NO_3)_2$, and $Cu(NO_3)_2$, all 1M. She also has a salt bridge containing $KNO_{3 (aq)}$ wires and a voltmeter.

a) Which combination of 2 metals and 2 solutions should she choose to get the **highest** possible voltage?

Metal:	Solution:
Metal:	Solution:

b) Draw a diagram of her cell labeling metals, solutions, salt bridge, wires, and voltmeter.

c) Write an equation for the half-rx at the **cathode**. (with E°)

d) Write an equation for the half-rx at the **anode** (with E°)

e) Write a balanced equation for the overall redox reaction in the cell (with E^o)

f)	The initial voltage of this cell isvolts.	
g)	In this cell, e's are flowing toward which metal? In	n the
h)	Positive ions are moving toward the solution in the	•
i)	Nitrate ions migrate toward the solution in the _	
j)	metal is gaining mass As the cell operates.	

The student now wants to find the combination of metals and solutions that will give the **lowest** voltage.

k) Which metals and solution should she use?

Metal	Solution
Metal	Solution

I) Find the overall redox equation for this cell.

m) Find the **initial cell voltage** of this cell _____volts.

Consider the following cell:

The voltage on the voltmeter is 0.45 volts.

a) Write the equation for the half-reaction taking place at the anode. Include the E° .

	E°:v
b)	Write the equation for the half-reaction taking place at the cathode.
	E ^o :v
c)	Write the balanced equation for the redox reaction taking place as this cell operates. Include the E° .
	E°:
d)	Determine the reduction potential of the ion X^{2+} .
	E ^o :v
e)	Toward which beaker $(X(NO_3)_2)$ or $(Cr(NO_3)_3)$ do NO_3^- ions migrate?
f)	Name the actual metal "X"

Consider the following cell:

The initial cell voltage is 1.20 Volts

a)	Write the equation for the half-reaction which takes place at the cathode. Include the E°		
	E°=v		
b)	Write the equation for the half-reaction taking place at the anode:		
	E ^o =v		
c)	Write the balanced equation for the overall redox reaction taking place. Include the E° .		
	E°=v		
d)	Find the oxidation potential for Cd: $E^{o} = $ v		
e)	Find the reduction potential for Cd^{2+} : $E^{o} = \v$		
f)	Which electrode gains mass as the cell operates?		
g)	Toward which beaker (AgNO ₃ or Cd(NO ₃) ₂) do K ⁺ ions move?		
h)	The silver electrode and $AgNO_3$ solution is replaced by Zn metal and $Zn(NO_3)_2$ solution.		
	What is the cell voltage now?Which metal now is the cathode?		

Consider the following electrochemical cell:

a) Write the equation for the half-reaction taking place at the nickel electrode. Include the E°

_ E°=	V

b) Write the equation for the half-reaction taking place at the Cu electrode. Include the E°.

_____E°=____v

c) Write the balanced equation for the redox reaction taking place. $E^{\circ} =$ _____v

d) What is the initial cell voltage? __________

- e) Show the direction of electron flow on the diagram above with an arrow with an "e⁻" written above it.
- f) Show the direction of flow of cations in the salt bridge using an arrow with "Cations" written above it.

Voltages at non-standard conditions

<u>Note:</u> When cells are first constructed, they are **not at equilibrium**. All the voltages calculated by the reduction table are **initial voltages**.

-As the cells operate, the concentrations of the ions change:

eg) For the cell: $Cu(NO_3)_2/Cu/Zn/Zn(NO_3)_2$ the cathode ½ reaction is: $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{\circ} = + 0.34 \text{ v}$ the anode ½ reaction is: $Zn \rightarrow Zn^{2+} + 2e^{-}$ $E^{\circ} = + 0.76 \text{ v}$ the overall reaction is: $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$ $E^{\circ} = + 1.10 \text{ v}$

All electrochemical cells are exothermic (they give off energy) strong tendency to form products

<u>Initially</u>: $Cu^{2+} + Zn \iff Cu + Zn^{2+} + energy$ Voltage = 1.10 v

 As the cell operates [Cu²⁺] decreases (reactants used up) & [Zn²⁺] increases (products formed). Both these changes tend to push the reaction to the left (LeChateliers Principle) Cu²⁺ + Zn ≤→ Cu + Zn²⁺ + energy Voltage < 1.10 v

Eventually, these tendencies will be **equal**. At this point, the cell has reached equilibrium. At **equilibrium** the cell voltage becomes **0.00 v**.

- <u>Question</u>: A cell is constructed using $Cr/Cr(NO_3)_3$ and $Fe/Fe(NO_3)_2$ with both solutions at 1.0 M and the temperature at 25 °C.
 - a) Determine the initial cell voltage.

b)	What is the equilibrium cell vo	ltage?			
c)	Write the balanced equation for "energy" on the right side and m	Answer: the overall reaction taking pla ake the arrow double.	v ace. Write the word		
d)	Using the equation in (c), predict what will happen to the cell voltage when the following changes are made: i) More $Cr(NO_3)_3$ is added to the beaker to increase the [Cr ³⁺]				
	ii) The [Fe ²⁺] ions is increased .	Cell voltage: Cell voltage	creases		
	iii) A solution is added to precipi	tate the Fe ²⁺ ions			
	The [Fe ²⁺] will	_crease & cell voltage will	crease		

Answer:

v

iv) Cr³⁺ ions are removed by precipitation. Voltage: _____creases

- v) The surface area of the Fe electrode is increased (see "conclusion near middle of page 223 SW) Voltage: ______
- vi) The salt bridge is removed. Voltage_____

Predicting spontaneity from E° of a redox reaction

If E[°] for any redox (overall) reaction is > 0 (positive) the reaction is **Spontaneous**. If E[°] is < 0 (negative) the reaction is **Non-spontaneous** When a reaction is **reversed** the **sign** of E[°] changes

Example:

- a) Find the standard potential (E^o) for the following reaction: $2MnO_4^- + 4H_2O + 3Sn^{2+} \rightarrow 2MnO_2 + 8OH^- + 3Sn^{4+}$
- b) Is this reaction as written (forward rx) spontaneous? _____
- c) Is the reverse reaction spontaneous? $___ E^\circ = ___$

Solution:

a) Find the two half-rx's which add up to give this reaction. Write them so what's on the **left** of the overall rx is on the **left** of the half-rx. (& what's on **right** is on the **right**) The half-rx for $MnO_4 \rightarrow MnO_2$ in basic soln. is at + 0.60. To keep MnO_4 on the left, this $\frac{1}{2}rx$ is written as it is on the table.

$$\mathsf{MnO}_4^{-} + 2\mathsf{H}_2\mathsf{O} + 3\mathsf{e}^{-} \rightarrow \mathsf{MnO}_2 + 4\mathsf{OH}^{-}\mathsf{E}^{\circ} = +0.60$$

The rest of the overall rx involves Sn^{2+} changing to Sn^{4+} . The ½ reaction for that must be reversed as well as its E^o. Since Sn^{2+} must stay on the left side, the half-rx on the table must be reversed as well as its E^o.

 $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-} E^{\circ} = -0.15 V$

-Now, add up the 2 $\frac{1}{2}$ -rx's to get the overall (Multiply by factors to balance e⁻'s –and add up E^os.

$$(MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-) 2 \qquad E^\circ = + 0.60 v (Sn^{2+} \rightarrow Sn^{4+} 2e^-) 3 \qquad E^\circ = -0.15 v 2MnO_4^- + 4H_2O + 3Sn^{2+} \rightarrow 2MnO_2 + 8OH^- + 3Sn^{4+} \qquad E^\circ = +0.45 V$$

So E° for the overall redox reaction = **+ 0.45 v**

- b) Since E^o is positive, this reaction is **spontaneous** as written.
- c) The E° for the reverse reaction would be 0.45 v so the reverse reaction is non-spontaneous.

Question

- a) Calculate E^o for the reaction: $3N_2O_4 + 2Cr^{3+} + 6H_2O \rightarrow 6NO_3^- + 2Cr + 12H^+$
- b) Is the forward rx spontaneous? _____ The reverse rx? _____

Read SW. p. 215-224 Do Ex. 35 p. 217 and Ex. 36 a-d & 37-45 on p. 224-226 of SW

Practical Applications of Electrochemical Cells

-See SW. p. 230 - 233

The Lead-Acid Storage Battery (Automobile battery)

-This cell is rechargeable (Reactions can be reversed)

Anode 1/2 reaction (Discharging or operating)

$$Pb_{(s)} + HSO_{4}_{(aq)} \rightarrow PbSO_{4}_{(s)} + H^{+}_{(aq)} + 2e^{-}$$

$$Ox \# = 0$$

$$Ox \# = +2$$
You can tell this is oxidation
because ox # of Pb _____ creases
and electrons are _____. (LEOA)

Cathode 1/2 reaction (Discharging or operating)

Write the balanced equation for the overall redox reaction (discharging)

The overall redox reaction: (discharging or operating)

 $\begin{array}{c} \mathsf{Pb}_{(s)} + \mathsf{PbO}_{2(s)} + \underbrace{\mathsf{2H}^{+}_{(aq)} + \mathsf{2HSO}_{4}_{(aq)}}_{\mathsf{From}___in} \xrightarrow[]{} \mathsf{PbSO}_{4}_{(s)} + \underbrace{\mathsf{2H}_2\mathsf{O}_{(l)}}_{\mathsf{H}_2\mathsf{O}_{(l)}}_{\mathsf{H}_2\mathsf{O}_{(l)}} + electrical energy \\ & \text{White solid forms on} \\ & \text{plates as battery} \\ & \text{discharges} \end{array}$

Notes: As cell discharges the anode (Pb) and cathode (PbO_2) disintegrate and the white solid ($PbSO_4$) forms on both plates.

Originally, $[H^+] \& [HSO_4^-]$ is high. i.e.) $[H_2SO_4]$ is high. H_2SO_4 is denser than H_2O therefore the density (specific gravity) of the electrolyte is **high** to start with. As the cell discharges, H_2SO_4 ($H^+ \& HSO_4^-$) is used up and H_2O is formed. Therefore, electrolyte gets less dense as the battery discharges. Condition of the battery can be determined using a "hydrometer" or battery tester. (Higher the float, the **denser** the electrolyte)

Adding electrical energy to this reaction will reverse it (recharging)

Charging Reaction:

The E^o for the **discharging** rx, is +2.04 volts. A typical car battery has _____ of these in

(Series/parallel) ______ to give a total voltage =_____V.

<u>The Zinc-Carbon battery</u> (LeClanche-Cell, Common Dry cell, or regular carbon battery. Often called "Heavy Duty")

Cathode 1/2 reaction:

(GERC) $2MnO_{2 (s)} + 2NH_4^+(aq) + 2e^- \rightarrow 2MnO(OH)_{(s)} + 2NH_3(aq)$

<u>Or simplified:</u> $Mn^{4+} + e^{-} \rightarrow Mn^{3+}$

Anode ¹/₂ reaction:

(LEOA) $Zn_{(s)} + 4NH_{3(aq)} \rightarrow Zn(NH_{3})_{4}^{2+} + 2e^{-1}$

Or simplified: $Zn_{(s)} \rightarrow Zn^{2+} + 2e^{-1}$

-Not rechargeable

-Doesn't last too long – especially with large currents -Fairly cheap

The alkaline dry cell

-Operates under basic conditions

- Delivers much greater current
- Voltage remains constant
- More expensive
- Lasts longer

Cathode ½ reaction (GERC) Anode ½ reaction (LEOA) $2MnO_2 + H_2O + 2e^{-} \rightarrow Mn_2O_3 + 2OH^{-}$ $Zn_{(s)} + 2OH^{-} \rightarrow ZnO + H_2O + H_2O + 2e^{-}$ $Ox \# = ___ Ox \# = ___ Ox \# Ox @A = ___ Ox @A = Ox$

Fuel cells

-Fuel cells are continuously fed fuel and they convert the **chemical** energy in fuel to **electrical** energy

-more **efficient** (70-80%) than burning gas or diesel to run generators (30-40%) -no pollution – only produces **water**

can use H_2 and O_2 or hydrogen rich fuels (e.g. methane CH₄) and O_2 . -used in space capsules $-H_2 \& O_2$ in tanks H_2O produced used for drinking

 $\frac{\text{Anode } \frac{1}{2} \text{ reaction:}}{2H_{2(g)} + 4OH_{(aq)} \rightarrow 4H_2O_{(l)} + 4e^{-1}$

Cathode 1/2 reaction:

$$O_{2(g)} + 2H_2O_{(l)} + 4e^- \rightarrow 4OH_{(aq)}$$

Overall reaction:

 $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(I)}$

Applied electrochemistry—The Breathalyzer Test

After drinking, breath contains ethanol C₂H₅OH. Acidified dichromate (at $E^{\circ} = 1.23$ on the reduction table) will **oxidize** alcohol. The unbalanced formula equation is: **C**₂H₅OH + K₂**Cr**₂O₇ + H₂SO₄ \rightarrow **C**H₃**C**OOH + **Cr**₂(SO₄)₃ + K₂SO₄ + H₂O Ox # of C= _____ Ox # of Cr= _____ Ox # of Cr= _____ K₂Cr₂O₇ is yellow (orange at higher concentrations)
Cr₂(SO₄)₃ is green

-Exhaled air is mixed with standardized acidified dichromate
-Put in a spectrophotometer set at the wavelength of green light
-More alcohol produces more green Cr₂(SO₄)₃ (green)
-Machine is calibrated with known concentration samples of alcohol to ensure accuracy

Question: In the reaction above name

- a) The oxidizing agent ____
- b) The reducing agent _____
- c) The product of oxidation _____
- d) The product of reduction _____