SIGNIFICANT FIGURES
Hebden $11 \rightarrow U_{n}$ it II p. 27-40

Name:Pepe Le KEY
Date: \qquad
Block: \qquad

Al Measurements have some degree of uncertainty to them (due to the instrument used.)
To indicate the degree of certainty in a measurement (or a number derived from a measurement), scientists use significant figures. Or numbers they know to be 100% accurate.
** Significant figures are important in the way we report different kinds of data!

rounding errors

- A significant figure is a measured or meaningful digit
A. What is Not Significant?
is NEVER a measured
value that is "PERFECT".
Defined or counting numbers: A number which involves things which cannot realistically be subdivided.
Example:
1 book; 4 students (cannot have 1.5 books or 4.78 students)
Conversion factors are assumed to be an exact relationship (cannot have $1 \mathrm{~kg}=1000.5 \mathrm{~kg}$)

Rules for identifying \# of sig figs:

a) An exact number (e.g. 25 students) has an infinite number of significant figures because the number was not rounded off. Exact numbers are not used to determine the significant digits.
b) For all measurements, the following rules apply to count the number of significant figures a number has.

1. Any digit between $1-9$ is significant.

$$
\begin{gathered}
\text { e.g. } 234.566 \text { has } \quad 6 \quad \text { sig figs } \\
7.4586 \text { has } \quad 5 \quad \text { sig figs }
\end{gathered}
$$

2. A ' O ' at the beginning of a number is not significant because it only holds the decimal place. Leading zeros are NOT significant

egg. 0.00045 has
2 sig figs
0.02333 has \qquad sig figs
3. A ' 0 ' between two other sig figs is significant.
e.g. 50034.03 has 7 sig figs
e.g 534.034201 has \qquad sig figs
4. A ' 0 ' at the end of a number is only significant IF a decimal point occurs in the number otherwise it is not significant. Be careful with this one!

Trailing zeroes are NJT significant UNLESS their's a decimal!? e.g. 750000 has 2 sig figs

20000000 has \qquad sig fig
e.g. 750.000 has
$6 . \quad$ sig figs

Example:
If a balance gives a reading of 97.53 g when a beaker is placed on it, the reading is considered to have 4 significant figures. If the beaker is then put on a different balance and gives a reading of 97.5295 g , there are more significant figures to the measurement (6 significant figures).

How many significant figures do each of the following measurements have?

B. Scientific Notation

Scientific Notation is a way of writing numbers for values too large or small to be conveniently written in standard decimal notation.

Example:

$$
\begin{aligned}
& 10=1.0 \times 10^{1} \\
& 25=2.5 \times 10^{1} \\
& 250=2.5 \times 10^{2} \\
& 0.0000350000=3.5000 \times 10^{-5}
\end{aligned}
$$

Write the following numbers in scientific notation:

\rightarrow proper scientific notation

1. 3570

2. 41.400
3. 0.000572
.-1-1-1 $=-4$
4. 41.50×10^{-4}
5. 0.000410×10^{7}

4.1400×10^{-4}
5.72×10^{-4}

$$
4.150 \times 10^{-3}
$$

SHould

digits that are Significant!!" (6) Bad scientific notation!
C. Adding or Subtracting Significant Figures

When adding or subtracting significant figures, round off the answer to the least number of decimal places contained in the calculation.

Example:
OR L WORST VALUE PLACE?
$12.56 \mathrm{~cm}(2$ SF after decimal) $+125.8 \mathrm{~cm}(1$ SF after decimal) $=138.36 \mathrm{~cm} \rightarrow 138.4 \mathrm{~cm}$ (1 SF after decimal)
Exercise:
3. $4.5510^{-5}+3.1 \times 10^{-5}$ "worstralue" place.

Multiplying or Dividing Significant Figure
When multiplying or dividing significant figures, round off the answer to the least number or signineant figures contained in the calculation.

FINAL ANSWER!
Example:

$$
2.00(3 S F) \times 3.00000(6 S F)=6.00(3 S F)
$$

Exercise:

1. 12.5×0.50 \qquad can only have \qquad
2. $\frac{0.15}{2} \times \frac{0.0016}{2}$ \qquad 2.4×10^{-4} or 0.00024
3. $\frac{40.0}{3} / 30.000$

4. $\frac{2.5}{2} \times 7.500 / 0.150$ \qquad
5. $\frac{4.37}{3} \times 103 / 0.008 \frac{5600}{5}$
6. $\underset{2}{0.51} \times 10^{-4} / \underset{1}{6 \times 10-7}$

7. $0.00001 / 0.1000$

Summary Practice Exercises:
In the following mixed calculations, perform multiplications and divisions before doing the additions and subtractions. Keep track of the number of significant figures at each stage of a calculation.

BEDMAS

1. $25.00 \times 0.100-15.87 \times 0.1036$

2. $(\underbrace{0.86}_{0.865-0.800}) \times(\underbrace{1.593+9.04}_{10.63})$

3. $(0.3812-0.4176) /(0.0159-0.0146$

4. $9.34 \times 0.07146-6.88 \times 0.08115$

$$
0.667-0.558 \Rightarrow
$$

D. Reading A Scale

The number of significant figures is equal to all the certain digits PLUS the first uncertain digit.

In the figure to the left, the liquid level is somewhere between 24 mL and 25 mL . You know that it is at least 24 mL so you are "certain" about the first two digits.

As a guess, it could be 24.9 mL . There is some significance to the last digit but but not completely certain. For example, there are the reading is not 24.1 mL . As a result, there are two certain digits, (2 and 4) and one uncertain (9).

