NOTE: For the same element: The more positive species is always the

RA

Oxidizing Agent. Eg.) $A^{2+} A$

OA

Using data to make your own simple Redox table

Example problem:

 Four metals A, B, C, & D were tested with separate solutions of A²⁺, B²⁺, C²⁺ & D²⁺. Some of the results are summarized in the following table:

Solution				
Metal	A ²⁺	B ²⁺	C ²⁺	D ²⁺
A		⁽¹⁾ no reaction	⁽²⁾ reaction	
В				⁽⁴⁾ no reaction
D	⁽³⁾ reaction			

List the ions in order from the strongest to weakest oxidizing agent.

<u>Using data</u>

1) – Since B^{2+} does not oxidize A : B^{2+} must be below A on the table.

2) - Since C^{2+} reacts with A: C^{2+} must be above A:

$$C^{2+} + 2e^{-} = C$$

 $A^{2+} + 2e^{-} = A$
 $B^{2+} + 2e^{-} = B$

Since A²⁺ reacts with D: A²⁺ must be above D on the table. But is D²⁺ above or below B²⁺? We don't know yet.

$$\begin{array}{c} D^{2+} & Here \\ \hline D^{2+} & Here \\ \hline Or here? \end{array} \begin{array}{c} C^{2+} \\ A^{2+} \\ B^{2+} \end{array}$$

Let's look at the next information:

- 4) $-D^{2+}$ does not react with B
 - Now we know that D²⁺ must be below B on the table

So now we have our complete table:

Oxidizing agents		Reducing agents	
▲	$C^{2+} + 2e^{-} = C$		
	$A^{2+} + 2e^{-} = A$		
	B ²⁺ + 2e ⁻	= B	
	D ²⁺ + 2e ⁻	= D	★

- At this point its good to go back and recheck that all the data given is consistent with your table.
- So now we have our answer; The ions in order of strongest to weakest ox agent is: C²⁺, A²⁺, B²⁺, D²⁺
- Just in case you're asked, you can see that the order of reducing agent from strongest to weakest is D, B, A, C.

Another example -

Four non-metal oxidizing agents X_2 , Y_2 , Z_2 and W_2 are combined with solutions of ions: X⁻, Y⁻, Z⁻ and W⁻.

The following results were obtained;

- (1) X_2 reacts with W⁻ and Y⁻ only.
- (2) Y⁻ will reduce W₂

List the reducing agents from strongest to weakest

(1) X_2 will be above $W^- \& Y^-$, but below Z^-

(2) Since Y^{-} reduces W_2 , Y^{-} must be lower on the right of W_2 .

	OA's		RA's	
▲	Z ₂ + 2e ⁻	\rightleftharpoons	2Z ⁻	
	X ₂ + 2e ⁻	₹	2X ⁻	
	W ₂ + 2e ⁻	⇄	2W ⁻	↓ I
	Y ₂ + 2e ⁻	⇄	2Y ⁻	·

To answer the question:

The reducing agents from strongest to weakest are: Y, W, X, Z

Question:

Four solutions $A(NO_3)_2$, $B(NO_3)_2$, $C(NO_3)_2$, and $D(NO_3)_2$ are added to metals, A, B, C, & D

The following information is found:

- (1) The metal A will not react with any of the solutions
- (2) $C(NO_3)_2$ reacts spontaneously with B
- (3) B will not react with $D(NO_3)_2$
- (a) Make a small reduction table showing reductions of the metallic ions. (Don't forget to **discard** the **spectator** nitrate ions.

- (b) List the oxidizing agents in order of strongest to weakest:
- (c) List the reducing agent in order of strongest to weakest:
- (d) Would it be safe to store A(NO₃)₂ solution in a container made of the metal D?

Do Exercises 14,15,16 & 18 on p. 200 of SW.

Balancing half-reactions

-Some half-rx's are on the table, but not all. -Given if the soln. Is <u>acidic</u> or <u>basic</u>. Pay attention!

-Think of *Major Hydroxide* (Major $\rightarrow O \rightarrow H \rightarrow -$ (charge)) <u>Major atoms \rightarrow atoms other than O & H</u>

<u>Acid Soln.</u> E.g.) $S_2O_8^{2-} \rightarrow HSO_3^{-}$ (acid soln.)

(1) Balance Major Atoms (S in this case)

 $S_2O_8^{2-} \rightarrow 2HSO_3^{-}$

(2) <u>Balance "O" atoms</u>, by adding H_2O (to the side with less O's)

 $S_2O_8^2 \rightarrow 2HSO_3^2 + \frac{2H_2O}{2H_2O_3}$

(3) <u>Balance "H" atoms</u> by adding H^+ (to the side with less H's)

 $S_2O_8^{2-} + \frac{6H^+}{2} \rightarrow 2HSO_3^{-} + 2H_2O$

(4) <u>Balance charge</u> by adding e⁻'s (to the more + side)

$$\begin{array}{c} S_2O_8^{2^-} + 6H^+ \rightarrow 2HSO_3^- + 2H_2O\\ TIC = (+4) & TIC = (-2) \end{array}$$

The left side needs 6e⁻'s to get a –2 charge

So the final balanced half-rx is:

 $S_2O_8^{2-} + 6H^+ + 6e^- \rightarrow 2HSO_3^- + 2H_2O$ TIC = (-2) TIC = (-2)

-Always double-check these! -Don't miscopy charges, etc. Try this one: $MnO_4^- \rightarrow Mn^{2+}$ (acid soln)

In basic solution

```
-Do the first steps of the balancing just like an acid
```

```
E.g.) MnO_2 \rightarrow MnO_4^- (basic solution)

<u>Major</u> (Mn already balanced)

<u>Oxygen</u> 2H_2O + MnO_2 \rightarrow MnO_4^-

<u>Hydrogen</u> 2H_2O + MnO_2 \rightarrow MnO_4^- + 4H^+

<u>Charge</u> 2H_2O + MnO_2 \rightarrow MnO_4^- + 4H^+ + 3e^-
```


Try this one: $Pb \rightarrow HPbO_2^-$ (basic soln)

-Reactions without H's or O's are done in neutral soln -Do Ex 19 a-m p. 203

Balancing overall redox reactions using the half-reaction (half-cell) method

- (1) Break up Rx into 2 half-rx's.
- (2) Balance each one (in acidic or basic as given)
- (3) Multiply each half rx by whatever is needed to cancel out e⁻'s (Note: balanced half-rx have e^{-s} (on left reduction on right oxidation) Balanced redox don't have e-'s)
- (4) Add the 2 half-rx's canceling e 's and anything else (usually H_2O 's, H^+ 's or OH 's) in order to simplify.

 $U^{4+} + MnO_4^- \rightarrow Mn^{2+} + UO_2^{2+}$ (acidic) Example:

Balance each 1/2 rx $MnO_4^- \rightarrow Mn^{2+}$ $U^{4+} \rightarrow UO_2^{2+}$ $\begin{array}{l} (\text{Major (U) balanced already}) \\ (\text{Major (U) balanced already}) \\ (\text{Major (U) balanced already}) \\ (\text{Major (Mn) balanced already}) \\ (\text{Major (Mn) balanced already}) \\ (\text{Major (Mn) balanced already}) \\ (\text{MnO}_4^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ \rightarrow \text{Se}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}) \\ (\text{MnO}_4^- + 8\text{H}^+ +$

 $(U^{4+} + 2H_2O \rightarrow UO_2^{2+} 4H^+ + 2e^-) 5^{4}$ (MnO₄⁻ + 8H⁺ + 5e⁻ → Mn²⁺ + 4H₂O) 2 $\stackrel{\text{Multiply by 2 to get 10e}^{-}$

 $5U^{4+} + 10H_2O + 2MnO_4^{-} + 16H^{+} + 10e^{-} \rightarrow 5UO_2^{2+} + 20H^{+} + 2Mn^{2+} + 8H_2O + 10e^{-}$

To simplify: -Take away 10e⁻ from both sides

-Take away 16H⁺'s from both sides -Take away 8H₂O's from both sides

Quick check by finding TIC's on both sides

- $5U_{4^{+}}^{4+} + 2H_2O + 2MnO_4^{-} \rightarrow 5UO_2^{2^{+}} + 4H^{+} + 2Mn^{2^{+}}$ +20 + 0 - 2 +10 + 4 + 4TIC = +18TIC = +18
- If you have time check all atoms also if TIC's are not equal you messed up! _ Somewhere! Find it!

Try this one:

 $SO_2 + IO_3^- \rightarrow SO_4^{2-} + I_2$ (basic solution)

-See examples p.205-207 in SW

Quick notes

-Some redox equations have just one reactant

- Use this as the reactant in **both** half-rx's.
- These are called "self-oxidation-reduction" or Disproportionation reactions.
- Eg) $Br_2 \rightarrow Br^- + BrO_3^-$ (basic) (found in some hot tubs)

Half rx's are:

$Br_2 \rightarrow Br^{-}$	$Br_2 \rightarrow BrO_3^-$

Answer:

Do Ex 24 a-w p. 207 The more practice the better! See me if you want more!

Balancing redox equations using the oxidation number method

-This is optional

- As long as one method (not guessing!) works for you that's fine. (This method or half-rx method.)
- Read examples p. 271-272 SW
- Do any ex 10 a-n & check with key

Redox titrations

- same as in other units (solubility/acids-bases)
- coefficient ratios for the "mole bridge" are obtained by the balanced redox equation:

TITRATIONS				
STANDARD	mole bridge	SAMPLE		
Conc. & Volume \rightarrow <i>moles</i>		<i>moles</i> \rightarrow Conc. or		
or Mass		Volume		
$mol = M \times L$		M = mol/L		
or: grams x <u>1 mol</u> = mol		or $L = mol/M$		
MM g				

- Eg) Acidified hydrogen peroxide (H_2O_2) is used to titrate a solution of MnO_4^- ions of unknown concentration. Two products are O_2 gas and Mn^{2+} .
- a) Write the **balanced redox equation**:
- b) It takes 6.50 mL of 0.200 M H_2O_2 to titrate a 25.0 mL sample of MnO_4 solution. Calculate the original [MnO₄].

Finding a suitable solution titrate a sample

Use redox table:

- If sample is on the **left** (OA)
 - Use something **below** it on the right. (RA)
- If sample is on the right (RA) use something above it on the left (OA)
- Good standards will change colour as they react

Acidified MnO_4^- (purple) = Mn^{2+} (clear) Acidified $Cr_2O_7^{2-}$ (orange) = Cr^{3+} (pale green)

Read p. 210-212 carefully – go over the examples! Do ex 26 & 29 p. 213-214 SW.