Using data to make your own simple Redox table

Example problem:

1) Four metals $A, B, C, \& D$ were tested with separate solutions of $A^{2+}, B^{2+}, C^{2+} \& D^{2+}$. Some of the results are summarized in the following table:

Solution					
Metal	A^{2+}	B^{2+}	C^{2+}	D^{2+}	
A		${ }^{(1)}$ no reaction	${ }^{(2)}$ reaction	${ }^{(4)}$ no reaction	
B					
D	reaction				

List the ions in order from the strongest to weakest oxidizing agent.
Using data

1) - Since B^{2+} does not oxidize $A: B^{2+}$ must be below A on the table.

Oxidizing \quad| Reducing |
| :---: |
| agents |
| $A^{2+}+2 e^{-}$ |$=A$

$\mathrm{~B}^{2+}+2 \mathrm{e}^{-}=\mathrm{B}$

NOTE: For the same element: The more positive species is always the Oxidizing Agent.

2) - Since C^{2+} reacts with $\mathrm{A}: \mathrm{C}^{2+}$ must be above A :

$$
\begin{aligned}
& \mathrm{C}^{2+}+2 \mathrm{e}^{-}=\mathrm{C} \\
& \mathrm{~A}^{2+}+2 \mathrm{e}^{-}=\mathrm{A} \\
& \mathrm{~B}^{2+}+2 \mathrm{e}^{-}=\mathrm{B}
\end{aligned}
$$

3) - Since A^{2+} reacts with D : A^{2+} must be above D on the table. But is D^{2+} above or below B^{2+} ? We don't know yet.

Or here?
Let's look at the next information:
4) - D^{2+} does not react with B

- Now we know that D^{2+} must be below B on the table

So now we have our complete table:

Oxidizing agents		Reducing agents
	$\mathrm{C}^{2+}+2 \mathrm{e}^{-}=\mathrm{C}$	
	$\mathrm{A}^{2+}+2 \mathrm{e}^{-}=\mathrm{A}$	
	$\mathrm{B}^{2+}+2 \mathrm{e}^{-}=\mathrm{B}$	
	$\mathrm{D}^{2+}+2 \mathrm{e}^{-}=\mathrm{D}$	

- At this point its good to go back and recheck that all the data given is consistent with your table.
- So now we have our answer; The ions in order of strongest to weakest ox agent is: $\mathrm{C}^{2+}, \mathrm{A}^{2+}, \mathrm{B}^{2+}, \mathrm{D}^{2+}$
- Just in case you're asked, you can see that the order of reducing agent from strongest to weakest is D, B, A, C.

Another example -

Four non-metal oxidizing agents X_{2}, Y_{2}, Z_{2} and W_{2} are combined with solutions of ions: $\mathrm{X}^{-}, \mathrm{Y}^{-}, \mathrm{Z}^{-}$and W^{-}.

The following results were obtained;
(1) X_{2} reacts with W^{-}and Y^{-}only.
(2) Y^{-}will reduce W_{2}

List the reducing agents from strongest to weakest

(1) X_{2} will be above $W^{-} \& Y^{-}$, but below Z

Oxidizing agents Reducing agents

$$
\begin{array}{lll}
\mathrm{Z}_{2}+2 \mathrm{e}^{-} & \rightleftarrows & 2 \mathrm{Z}^{-} \\
\mathrm{X}_{2}+2 \mathrm{e}^{-} & \rightleftarrows & 2 \mathrm{X}^{-}
\end{array}
$$

Are both below X_{2}, but we don't know in which order yet.
(2) Since Y^{-}reduces W_{2}, Y^{-}must be lower on the right of W_{2}.

To answer the question:
The reducing agents from strongest to weakest are: $\underline{Y^{-}, W^{-}, ~} X^{-}, Z^{-}$

Question:

Four solutions $\mathrm{A}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{~B}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{C}\left(\mathrm{NO}_{3}\right)_{2}$, and $\mathrm{D}\left(\mathrm{NO}_{3}\right)_{2}$ are added to metals, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{D}$

The following information is found:
(1) The metal A will not react with any of the solutions
(2) $\mathrm{C}\left(\mathrm{NO}_{3}\right)_{2}$ reacts spontaneously with B
(3) B will not react with $\mathrm{D}\left(\mathrm{NO}_{3}\right)_{2}$
(a) Make a small reduction table showing reductions of the metallic ions. (Don't forget to discard the spectator nitrate ions.
(b) List the oxidizing agents in order of strongest to weakest:
(c) List the reducing agent in order of strongest to weakest:
(d) Would it be safe to store $\mathrm{A}\left(\mathrm{NO}_{3}\right)_{2}$ solution in a container made of the metal D? \qquad
Do Exercises 14,15,16 \& 18 on p. 200 of SW.

Balancing half-reactions

-Some half-rx's are on the table, but not all.
-Given if the soln. Is acidic or basic.
Pay attention!
-Think of Major Hydroxide (Major $\rightarrow \mathrm{O} \rightarrow \mathrm{H} \rightarrow$ - (charge))
Major atoms \rightarrow atoms other than $\mathrm{O} \& \mathrm{H}$
Acid Soln. E.g.) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{HSO}_{3}^{-}$(acid soln.)
(1) Balance Major Atoms (S in this case)

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow \mathrm{HSO}_{3}^{-}
$$

(2) Balance " O " atoms, by adding $\mathrm{H}_{2} \mathrm{O}$ (to the side with less O 's)

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{--} \rightarrow 2 \mathrm{HSO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

(3) Balance " H " atoms by adding H^{+}(to the side with less H 's)

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{HSO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

(4) Balance charge by adding $e^{-i} s$ (to the more + side)

So the final balanced half-rx is:

$$
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{HSO}_{3}^{-}+2 \mathrm{H}_{2} \mathrm{O}
$$

TIC = (-2)

$$
T I C=(-\lambda)
$$

-Always double-check these!
-Don't miscopy charges, etc.

Try this one: $\quad \mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$ (acid soln)

In basic solution

-Do the first steps of the balancing just like an acid
E.g.) $\mathrm{MnO}_{2} \rightarrow \mathrm{MnO}_{4}^{-} \quad$ (basic solution)

Major (Mn already balanced)
Oxygen $\quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{2} \rightarrow \mathrm{MnO}_{4}^{-}$
Hydrogen $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{2} \rightarrow \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}$
Charge $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{2} \rightarrow \mathrm{MnO}_{4}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$
In basic solution: write the reaction $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}$
$-\operatorname{In}$ whichever way is needed to cancel out the H^{+}'s
-Add to the half-rx

Try this one: $\mathrm{Pb} \rightarrow \mathrm{HPbO}_{2}^{-}$(basic soln)
-Reactions without H's or O's are done in neutral soln -Do Ex 19 a-m p. 203

Balancing overall redox reactions using the half-reaction (half-cell) method

(1) Break up Rx into 2 half-rx's.
(2) Balance each one (in acidic or basic as given)
(3) Multiply each half $r x$ by whatever is needed to cancel out e"s (Note: balanced half-rx have e "s (on left reduction on right oxidation) Balanced redox don't have e-s s)
(4) Add the 2 half-rx's canceling e-‘s and anything else (usually $\mathrm{H}_{2} \mathrm{O}^{\prime}$ s, H^{+}'s or $\mathrm{OH}^{-‘} \mathrm{~s}$) in order to simplify.

Example: $\quad U^{4+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{UO}_{2}{ }^{2+}$ (acidic)
Balance each $1 / 2 \mathrm{rx}$
$\mathrm{U}^{4+} \rightarrow \mathrm{UO}_{2}{ }^{2+} \xrightarrow{\mathrm{MnO}_{4}^{-}} \rightarrow \mathrm{Mn}^{2+}$
(Major (U) balanced already)
Oxygen $\rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{UO}_{2}{ }^{2+}$
Hydrogen $\rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}$
Charge $\rightarrow \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
(Major (Mn) balanced already)
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

$5 \mathrm{U}^{4+}+10 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightarrow 5 \mathrm{UO}_{2}^{2+}+20 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{e}^{-}$
To simplify: -Take away $10 e^{-}$from both sides
-Take away $16 \mathrm{H}^{+}$'s from both sides
-Take away $8 \mathrm{H}_{2} \mathrm{O}$'s from both sides

Quick check by finding
TIC's on both sides

- If you have time check all atoms also if TIC's are not equal you messed up! Somewhere! Find it!

Try this one:

$$
\mathrm{SO}_{2}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2} \text { (basic solution) }
$$

Quick notes

-Some redox equations have just one reactant

- Use this as the reactant in both half-rx's.
- These are called "self-oxidation-reduction" or Disproportionation reactions.

Eg) $\quad \mathrm{Br}_{2} \rightarrow \mathrm{Br}^{--}+\mathrm{BrO}_{3}^{-}$(basic) (found in some hot tubs)
Half rx's are:

$$
\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{--} \mid \quad \mathrm{Br}_{2} \rightarrow \mathrm{BrO}_{3}^{-}
$$

Answer: \qquad

Do Ex 24 a-w p. 207
The more practice the better! See me if you want more!

Balancing redox equations using the oxidation number method

-This is optional

- As long as one method (not guessing!) works for you that's fine. (This method or half-rx method.)
- Read examples p. 271-272 SW
- Do any ex 10 a-n \& check with key

Redox titrations

- same as in other units (solubility/acids-bases)
- coefficient ratios for the "mole bridge" are obtained by the balanced redox equation:

TITRATIONS		
STANDARD	mole bridge	SAMPLE
$\begin{aligned} & \begin{array}{l} \text { Conc. \& Volume } \rightarrow \\ \text { or Mass } \end{array} \xrightarrow{\text { moles }} \text {, } \end{aligned}$		moles \rightarrow Conc. or Volume
$\begin{aligned} & \mathrm{mol}=\mathrm{M} \times \mathrm{L} \\ & \text { or: grams } \times \frac{1 \mathrm{~mol}}{\mathrm{MMg}}=\mathrm{mol} \end{aligned}$	O	$\begin{aligned} & \mathrm{M}=\mathrm{mol} / \mathrm{L} \\ & \mathrm{~L}=\mathrm{mol} / \mathrm{M} \end{aligned}$

Eg) Acidified hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is used to titrate a solution of $\mathrm{MnO}_{4}{ }^{-}$ions of unknown concentration. Two products are O_{2} gas and Mn^{2+}.
a) Write the balanced redox equation:
b) It takes 6.50 mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ to titrate a 25.0 mL sample of $\mathrm{MnO}_{4}{ }^{-}$solution. Calculate the original $\left[\mathrm{MnO}_{4}{ }^{-}\right]$.

Finding a suitable solution titrate a sample

Use redox table:

- If sample is on the left (OA)

Use something below it on the right. (RA)

- If sample is on the right (RA) use something above it on the left (OA)
- Good standards will change colour as they react

Acidified MnO_{4}^{-}(purple) $=\mathrm{Mn}^{2+}$ (clear)
Acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (orange) $=\mathrm{Cr}^{3+}$ (pale green)
Read p. 210-212 carefully - go over the examples! Do ex 26 \& 29 p. 213-214 SW.

