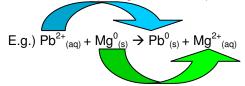
<u>Chemistry 12 – Unit 5</u>

Oxidation – Reduction

Introduction	-Demonstration of o	oxidation – reduc	ction reactions
Definitions:	(species means atom, ion or molecule)		
	<u>Oxidation</u> – a species undergoing oxidation loses electrons (charge becomes more positive)		
	<u>Reduction</u> – a species undergoing reduction gains electrons (charge becomes more negative)		
	<u>Oxidizing agent</u> – The species being reduced (gains electrons, causes the other one to be oxidized)		
	<u>Reducing agent</u> – The species being oxidized (loses electrons, causes the other one to be reduced)		
	2 e ⁻		
E.g.) Cu Oxidiz ager	•	\rightarrow Cu _(s) + Zn ²⁻	⁺ (aq)
	LEO says GER		
		Losing Electrons is Oxidization	Gaining Electrons is Reduction
		OA	.R
		The Oxidiz Agent Reduc	is

To carry it too far...


When LEO the Lion says GER you grab your OAR and <u>Row Away O</u>uta' there! (<u>Reducing Agent is O</u>xidized)

Redox – Short for Oxidation – Reduction

Redox identification

Charge on <u>neutral</u> atom or molecule = 0 <u>Oxidation</u> – Charge gets more + (loses electrons) <u>Reduction</u> – Charge gets more – (gains electrons)

Reduction (charge decreases)

Oxidation (Charge increases)

Question

In the reaction: $2Fe^{2+} + Cl_2 \rightarrow 2Fe^{3+} + 2Cl^{-1}$

Identify:

- a) The Oxidizing Agent: _____
- b) The species being oxidized:_____
- c) The reducing agent:____
- d) The species being reduced:
- e) The species gaining electrons:
- f) The species losing electrons:_____
- g) The product of oxidation_____
- h) The product of reduction_____

<u>Do Ex. 1 (a-e) pp. 192 SW</u>

Half-Reactions

-Redox reactions can be broken up into oxidation & reduction half reactions.

e.g.) Redox rx:
$$Pb^{2+}_{(aq)} + Zn_{(s)} \rightarrow Pb_{(s)} + Zn^{2+}_{(aq)}$$

The Pb²⁺ (loses/gains) _____ 2 electrons.

<u>**Reduction Half-rx:**</u> $Pb^{2+}_{(aq)} + 2e^{-} \rightarrow Pb_{(s)}$

Electrons on the LEFT side (or GER) Means REDUCTION Write the **oxidation** half reaction for the following redox rx.

$$Pb^{2+}_{(aq)} + Zn_{(s)} \rightarrow Pb_{(s)} + Zn^{2+}_{(aq)}$$

Ox half rx:

(In oxidation reactions, e⁻'s are _____ and are found on the _____ side.) (LEO)

Note: Half-rx's always have e's, redox (oxidation-reduction) reactions never show e's!

Given the redox reaction:

$$\mathsf{F}_{2(g)} + \mathsf{Sn}^{^{2+}}{}_{(aq)} \xrightarrow{} 2\mathsf{F}^{^{-}}{}_{(aq)} + \mathsf{Sn}^{^{4+}}{}_{(aq)}$$

Write the oxidation half-rx:_____

Write the reduction half-rx:_____

Do ex. 2 a-c on p. 192 SW

Oxidation numbers

-Real or apparent charge on an atom in a molecule or ion

In SW. p. 193 -the charge that an atom would possess if the species containing the atom was made up of ions (even if it's not!)

Rules to find oxidation number of an atom

1) In elemental form:

(Single atoms of monatomic elements) or (diatomic molecules of diatomic elements)

Oxidation number of atoms = 0

Eg) Mn, Cr, N₂, F₂, Sn, O₂, etc.

The oxidation # of each atom = 0

2) In monatomic ions: oxidation # = charge

Eg) In
$$Cr^{3+}$$
 -oxidation # of $Cr = +3$

$$S^{2-}$$
 -oxidation # of S = -2

3) In ionic compounds

a) the oxidation # of Alkali Metals is always +1

eg) <u>Na</u>Cl <u>K</u>₂CrO₄ Ox # of Na & K = +1

b) the oxidation # of **Halogens** when at the end (right side) of the formula is always **-1**

eg) Ca CI_2 Al Br_3 KF

Ox # of CI, Br and F = -1

Note: Halogens are **not** always -1! (Only when it is written **last** in formula.)

4) In molecules or polyatomic ions:

a) Ox. # of oxygen is almost always -2

e.g.) KOH CrO4²⁻ Li₃PO4 Ox # of O is -2

b) An exception is **Peroxides** in which ox. # of O = -1

 Hydrogen Peroxide: H_2O_2 Ox # of O's = -1

 Alkali Peroxides: Na_2O_2 Ox # of O's = -1

 (Remember, "O" in O_2 has an Ox. # of _____)

5) In molecules or ions:

a) **Hydrogen** is almost always **+1**

e.g.) <u>HNO₃ H₂SO₄ HPO₄²⁻ Every "H" has an ox # of +1</u>

b) An exception is **metallic hydrides**, which have an ox # of **-1**

e.g.) Na<u>H</u> Ca<u>H</u>₂ (In each one of these Ox. # of H = -1)

(What is the ox # of "H" in NH₃? _____)

(And remember ox # of "H" in $H_2 =$ ____)

Finding oxidation numbers of each atom in a molecule or PAI

In a neutral molecule the total charge = 0

e.g.) $NH_3 \leftarrow Total charge = 0$ (no charge)

In a polyatomic ion - the total ionic charge is written on the top right

e.g.) CrO_4^{2-4-} Total ionic charge (TIC) = -2

Oxidation numbers of all atoms add up to total ionic charge (TIC)

e.g.) Find the oxidation # of Cr in CrO_4^{2-}

(Let x = ox # of one Cr atom)

X + 4 [# of "O"atoms] (-2 [charge of oxygen]) = -2 [total ionic charge]

X = -2 + 8

X = +6 So ox # of Cr here = +6

e.g.) Find ox # of CI in HCIO₄

e.g.) Find Ox # of Cr in $Cr_2O_7^{2-}$

$$Cr_2O_7^{2-}$$

 $2x + 7(-2) = -2$
 $2x - 14 = -2$
 $2x = +12$
 $x = +6$

e.g.) Find ox # of P in Li_3PO_4

Li₃ P O₄

$$3(+1) + x + 4$$
 (-2) = 0
 $3 + x - 8 = 0$
 $x - 5 = 0$
 $x = +5$

Find Ox # of the underlined element in each of the following:

a) NaH₂PO₄ _____ b) Na₂O₂ _____ c) K<u>H</u> _____

Find the ox # of **Fe** in Fe_3O_4

Find the ox # of As in As_3O_5

Read p. 193-194 of SW. Do Exercise 3 on p. 194 of SW.

Changes in oxidation numbers

When an atom's **oxidation # is <u>increased</u>**, it is <u>oxidized</u>.

e.g.) Half-rx: $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

More complex:

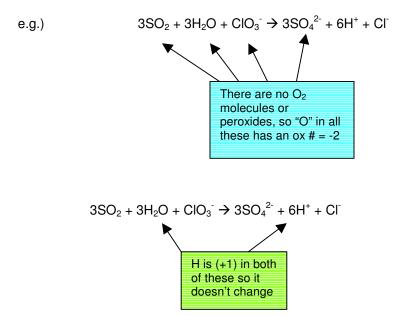
-When Mn^{3+} changes to MnO_4^{-} , is Mn oxidized or reduced?

 $Mn^{3+} \rightarrow MnO_4^-$

- What is the ox # of Mn before & after the reaction? Before ____ After ____

- The ox # of Mn is (de/in)____creased.

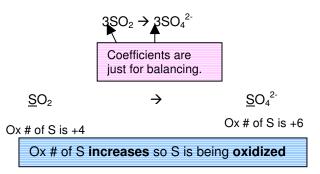
- In this process, Mn is (oxidized/reduced)_____


Reduction – When an atom's oxidation # is decreased, it is reduced.

e.g.) $\underline{Cu}(NO_3)_2 \rightarrow \underline{Cu}_{(s)}$			Ox # <u>de</u>	
	Ox # of Cu = +2		Ox # of Cu = 0	

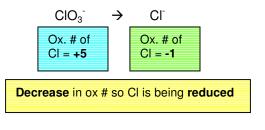
Ox # <u>decreases</u> (reduction)

Redox ID using oxidation #'s


<u>Given a more complex equation</u> – identify atoms which **do not change ox #'s** (often "O" or "H" but not always!)

Again:

$$3SO_2 + 3H_2O + CIO_3^{-} \rightarrow 3SO_4^{2-} + 6H^+ + CI^-$$


The only atoms left are "S" and "Cl". Find the Ox #'s of S and Cl⁻ in species that contain them. (Ox # of 1 atom in each case)

Note:

- > R.A.O., the **reducing agent** is **oxidized**
- > The species SO₂ is acting as the reducing agent.
- > The element **S** is being oxidized so **S** is losing electrons.

Look at the species with CI:

Therefore, the **species** acting as the **oxidizing agent** is ______.

(They may also ask for the **atom** acting as the **oxidizing agent** - this would be **CI** in ClO₃⁻)

Eg. –given the reaction:

 $2CrO_4^{2-} + 3HCHO + 2H_2O \rightarrow 2Cr(OH)_3 + 3HCOO^{-} + OH^{-}$

Find: a) The species being oxidized

- c) The reducing agent
- d) The species being reduced
- e) The oxidizing agent
- f) The species losing electrons
- g) The species gaining electrons

Notes:

- For hydrocarbons it's best to rewrite them as simple molecular formulas.
- All O's are in molecules or ions, no O₂ & no peroxides so O remains unchanged as -2
- All H's are in molecules or ions, no H₂ or metallic hydrides so H remains unchanged as +1
- The atoms to check for changes are C and Cr.

$$0 \xrightarrow{\text{Oxidation}} +2$$

$$2\underline{\text{Cr}}\text{O}_{4}^{2^{-}} + 3\underline{\text{C}}\text{H}_{2}\text{O} + 2\underline{\text{H}}_{2}\text{O} \rightarrow 2\underline{\text{Cr}}(\text{OH})_{3} + 3\underline{\text{H}}\underline{\text{C}}\text{O}_{2}^{-} + \underline{\text{OH}}^{-}$$

$$+6 \xrightarrow{\text{Reduction}} +3$$

So... a) the species being **oxidized** is (CH₂O) HCHO (inc. in ox #)

- b) the **reducing agent** is (CH₂O) HCHO (RAO)
- c) The species being **reduced** is CrO_4^{2-} (decrease in ox #)
- d) The **oxidizing agent** is $CrO_4^{2-}(OAR)$
- e) The species losing e⁻'s is (CH₂O) HCHO (LEO)
- f) The species **gaining e**'s is CrO_4^{2-} (GER)

Given the redox reaction:

$$2MnO_4^{-} + 3C_2O_4^{2-} + 4H_2O \rightarrow 2MnO_2 + 6CO_2 + 8OH^{-}$$

Find:

- a) The species being reduced: _____.b) The species undergoing oxidation: _____.
- c) The oxidizing agent: ______.
 d) The reducing agent: ______.
 e) The species gaining electrons: ______.

- f) The species losing electrons:

Given the balanced redox reaction:

 $3S + 4HNO_3 \rightarrow 3SO_2 + 4NO + 2H_2O$

Find:

- a) The oxidizing agent: _____.
- b) The reducing agent: _____.
- c) The species being reduced: _____.
- d) The species being oxidized: _____.

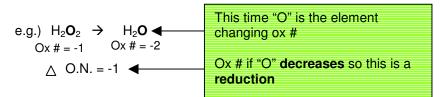
- g) The product of oxidation: _____.
- h) The product of reduction: .

Given the following:

 $6Br_2 + 12KOH \rightarrow 10KBr + 2KBrO_3 + 6H_2O$

Find:

- a) The oxidizing agent: _____.b) The reducing agent: _____.
- c) The species undergoing oxidation:
- d) The species being reduced: ______.
- e) The product of oxidation: ______.
- f) The product of reduction: ______


Using oxidation numbers to identify half-reactions

They don't have to be balanced

e.g.) If $NO_2 \rightarrow NO_3$ is an example of (oxidation or reduction?) _____.

("O" does not change it's ox # (no O₂ or peroxides)) so find ox # of **N** on both sides.

 $NO_2^{-} \rightarrow NO_3^{-}$ Since ox # increases, Ox # = +3 Ox # = +5 this is an oxidation △ O.N. = +2 ◀

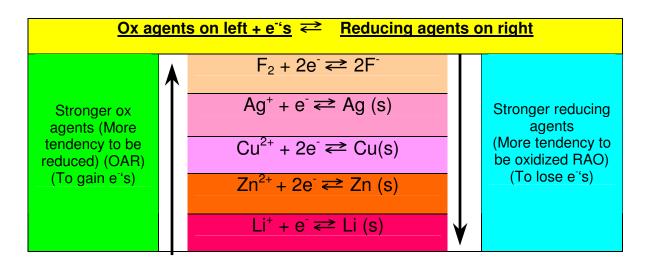
- a) $C_2H_5OH \rightarrow CH_3COOH$
- b) $Fe_2O_3 \rightarrow Fe_3O_4$ _____
- c) $H_3PO_4 \rightarrow P_4$
- (P₄ is the elemental form of phosphorus)
- d) $CH_3COOH \rightarrow CH_3COH$

NOTE: When asked if a given reaction is a redox or not:

Look for a change from an element -> compound or compound -> an element

These will <u>always</u> be redox, because in **elemental form ox.** # = 0 and in compounds usually **ox.** # is not = 0

Eg.) Is the reaction: $Zn + Cl_2 \rightarrow ZnCl_2$ a redox reaction? $0 \rightarrow -1$


Answer: It must be because $\triangle ON$ of Zn ($0 \rightarrow +2 = +2$) and $\triangle ON$ of Cl ($0 \rightarrow -1 = -1$)

Do Exercises 4, 5 and 6 on p. 194-195 of SW.

Half-reactions and the reduction table

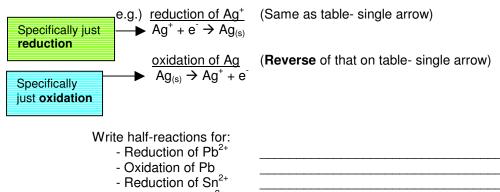
- Do Experiment 21-A

- Look at "Standard Reduction Table"

-So F_2 is a stronger ox agent than Ag+, etc.

-The strongest reducing agent on your chart is:

Help in Hunting


- Solid metals mostly on bottom right (less active ones Ag, Au, farther up on the right side)

- Halogens (e.g. Cl_2) and oxyanions e.g. BrO_3^- , MnO_4^- , IO_3^- found near top left Some metal ions found on both sides e.g. Fe^{2+} , Sn^{2+} , Cu^+ , Mn^{2+} can act as OA's or RA's

All the half-rx's are written as reductions:

e.g.)
$$F_2 + 2e^{-} \rightleftharpoons 2F^{-}$$

 $Ag^+ + e^{-} \rightleftharpoons Ag_{(s)}$

- The double arrow implies that oxidation's can also take place (reverse of reductions)

- Oxidation of Sn²⁺

- Reduc - Oxida - Reduc	tion of Fe^{2+} tion of Fe^{2+} tion of Fe tion of acidified MnO. tion of H ₂	4	
Which i	s a stronger oxidizing	agent:	Ni ²⁺ or Ag ⁺ ?
	Must be on the left side when treating these as OA's		Ni ²⁺ or Ag ⁺ ? Fe ²⁺ or Cr ³⁺ ? Sn ²⁺ or Sn ⁴⁺ ?
Which i	s a stronger reducing	agent:	Sn ²⁺ or Fe ²⁺ ?
	Must look for these on the right side		I I Zn or Ba? I Cl ⁻ or Br ⁻ ? I Fe ²⁺ or Au? I
Which I	has a greater tendenc	v to lose ele	ectrons Ni or Zn?

Which has a greater tendency to lose electrons, Ni or Zn? Which has a greater tendency to gain electrons, Fe³⁺ or Cr³⁺? Which solid metal has the least tendency to lose electrons? Which solid metal has the greatest tendency to lose e⁻ⁱs? Give the formula for an ion that is a stronger oxidizing agent that Ni²⁺, but is weaker than Pb²⁺?

Using the reduction table to predict which reactions are spontaneous

- An **oxidizing agent** will react **spontaneously** with (oxidize) a reducing agent <u>below</u> it on the <u>right</u>

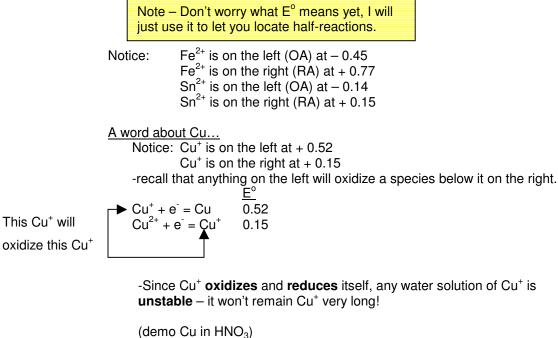
Look at your reduction chart!		
$F_2(g) + 2e^{-} \rightleftharpoons 2F^{-}$		F ₂ , the strongest OA, oxidize (react spontaneously
$S_2O_8 + 2e^2 \rightleftharpoons 2SO_4^{2-}$		with) all species below it on the right side from SO_4^{2-}
$Li^+ + e^- \rightleftharpoons Li_{(s)}$	¥	all the way down to Li(s)

Look at the 4 th half rx from the bottom		
$\frac{K^{+} + e^{-} \rightleftharpoons K_{(s)}}{Rb^{+} + e^{-} \nleftrightarrow Rb_{(s)}}$ $\frac{Cs^{+} + e^{-} \nleftrightarrow Cs_{(s)}}{Li^{+} + e^{-} \nleftrightarrow Li_{(s)}}$	↓	$K^{\scriptscriptstyle +}$ will oxidize only $Rb_{(s)},Cs_{(s)}$ and $Li_{(s)},$ nothing else on the chart.

A reducing agent on the right will react spontaneously with (reduce) any oxidizing agent on the <u>left above</u> it

- e.g.) Li(s) (bottom right) will **reduce** <u>all</u> **species** on the **left** side except Li⁺. SO_4^{2-} (near top right) will reduce **only** F_2
- An OA on the left will not react spontaneously with a RA on the right above it!
- e.g.) Au³⁺ will <u>not</u> oxidize (or react spontaneously with) SO_4^{2-} .

Some points ...


- 1) Be very careful with charges e.g. Li⁺ is a totally different thing than Li(s).
- 2) Things don't react with species which are **only on the same side** (these are **impossible** not just non-spontaneous.)

E.g.) K^{+} (4th from bottom on the left) will **not** oxidize Rb⁺ or Cs⁺ Li⁺ etc. –because they are on the **same side only**. (Impossible)

E.g.) $Li_{(s)}$ will **not** reduce $Cs_{(s)}$, $Rb_{(s)}$, $K_{(s)}$, etc. because they are all on the **same side only**.

Some elements with multiple oxidization numbers e.g.) Sn, Cu, Mn, Fe have ions on both sides of the chart!

 Look carefully at your table to find these.

Notice: Mn^{2+} is on the left at $E^{\circ} = -1$.

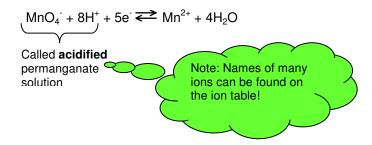
otice: Mn^{2+} is on the left at $E^{\circ} = -1.19$ Mn^{2+} is on the right at $E^{\circ} = +1.22$

Also notice: $Cr^{3+} + e^{-} = Cr^{2+} - 0.41$ $Cr^{3+} + 3e^{-} = Cr_{(s)} - 0.74$

If a redox reaction is **non-spontaneous**, then the reverse reaction will be spontaneous!

e.g.) The reaction $Sr^{2+} + Ca_{(s)} \rightarrow Ca^{2+} + Sr_{(s)}$ is **non**-spontaneous because Ca is **above** Sr^{2+} on the **right** side.

But the rx: $Ca^{2+} + Sr_{(s)} \rightarrow Sr^{2+} + Ca_{(s)}$ is spontaneous because $Sr_{(s)}$ is **below** Ca^{2+} on the **right** side


Use the reduction table to answer the following questions:

- a)
- b)
- c)
- d)
- e)
- $\begin{array}{l} \mbox{Will Br}_2 \mbox{ oxidize } Au_{(s)}?......\\ \mbox{Will Pb}_{(s)} \mbox{ reduce Fe}^{2+}?.....\\ \mbox{Will Zn}^{2+} \mbox{ react with } Cr^{3+}?....\\ \mbox{Will Mg}^{2+} \mbox{ react with } Cr^{3+}?....\\ \mbox{Give the symbol of an ion that will oxidize } Mn_{(s)} \mbox{ but not } Cr_{(s)}....\\ \mbox{Give the formula for a compound which will reduce } Co}^{2+} \mbox{ but will not reduce } r_{(s)}^{2+}. \end{array}$ f)
- g) both on the side)....
- Which is a stronger oxidizing agent, Cu⁺ or Sn²⁺?(Hint you must look for h) both on the _____ side).....

Acidified solutions

-Any reactions on the table with **H**⁺ in them are **acidified** or **acid solutions**.

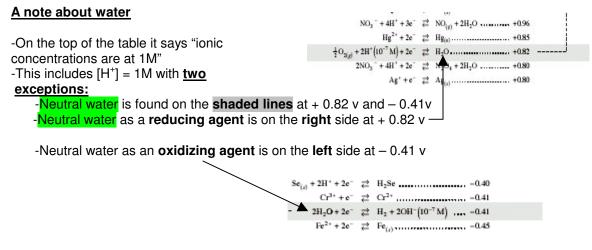
e.g.) Look at these: at $E^{\circ} = +1.51$ (4th from the top)

Give the E° corresponding to each of the following:

- a) acidified iodateE°
 - b) acidified dichromate..... $\overline{E^{\circ}}$
 - c) acidified manganese (IV) oxide...E°
 - d) acidified bromate......E°
 - e) acidified perchlorate..... \underline{E}°
- f) acidified oxygen gas.....<u>E</u>

Nitric, Sulphuric & Phosphoric acids

- These acids are shown in **ionized form** on the table
- Nitric acid (HNO3) is found in two places on the left side.


 $NO_{3}^{-} + 4H^{+} + 3e^{-} \rightleftharpoons NO + 2H_{2}O \qquad E^{\circ} = + 0.96 v$ $2NO_{3}^{-} + 4H^{+} + 2e^{-} \rightleftharpoons N_{2}O_{4} + 2H_{2}O \qquad E^{\circ} = + 0.80 v$ \square Don't worry about coefficients yet. They are only used for balancing.

- Sulphuric acid is found at + 0.17 v

 $SO_4^{2-} + 4H^+ + 2e^- \rightleftharpoons H_2SO_3 + H_2O E^0 = + 0.17 v$

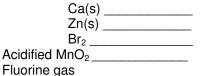
Find and write the half-reaction for the reduction of **phosphoric** acid (H₃PO₄)

Sulphurous acid (H₂SO₃)

(Notice H₂O is below this at – 0.83 v but in this solution [OH⁻] = 1M (so it's basic, not neutral)

(Again H₂O is also found at + 1.23 v but here $[H^+] = 1M$ so it's acidic, not neutral)

Questions


- a) Will neutral water oxidize Fe(s)? _____ Cr(s)? _____ Na(s)? _____
 b) Will neutral water reduce Au³⁺? _____ Ag⁺? _____
 c) Will acidified permanganate oxidize SO₄²⁻? _____ Br? ____ Zn? ____
- d) Will nitric acid react with Ag(s)? _____ Au(s)? _____ I ___ CI? _____
- e) Will nitric acid react with Fe^2
- f) Will nitric acid react with Hg to form N₂O₄?
- g) Will nitric acid react with Hg to form NO?
- h) Can you safely put a gold ring in acidified dichromate solution? _____ What about acidified bromate solution?
- i) If Cl₂ gas is bubbled into water, will it all remain as Cl₂, or will some be converted to Cl²?

Finding products of spontaneous reactions

Given $Sn^{4+} + H_2S - find$ the products eg) See the table at +0.15v and +0.14v $Sn^{4+} + 2e^{-} \rightleftharpoons Sn^{2+} + 0.15v$ $S(s) + 2H^+ + 2e^- \rightleftharpoons H_2S + 0.14v$ The higher reaction will be reduction (\rightarrow) , the lower reaction will proceed to the left (\leftarrow) and be an oxidation. Sn⁴⁺ + 2e⁻ → Sn²⁺ $S(s) + 2H^+ + 2e^- \leftarrow H_2S$ (reversed! Lower one is reversed-is an oxidation) -So the **products** are Sn²⁺, S, and H⁺ (at this point don't worry about coefficients yet.)

Questions

- a) What are the products of the reaction of acidified hydrogen peroxide (H_2O_2) and bromide (Br)?
- b) What are the products of the reaction when neutral water reacts with:

Read SW p. 195-199 Do Ex 7-12 p, 199-200 SW