Self-Test on Tutorial 11-KEY

 500.0 mL of 2.0 x 10⁻⁴ M Pb(NO₃)₂ solution is mixed with 800.0 mL of 3.0 x 10⁻³ M NaI solution. Do the necessary calculations to see if a precipitate will form or not.

The possible precipitate would be PbI₂. (The NaNO₃ is soluble)

The equilibrium dissociation equation for the possible precipitate:

 $PbI_{2(s)} \iff Pb^{2+}_{(aq)} + 2\Gamma_{(aq)}$

The [Pb²⁺] right after mixing:

 $[Pb^{2+}] = 2.0 \times 10^{-4} \text{ M x} \frac{500.0 \text{ mL}}{1300.0 \text{ mL}} = 7.692 \times 10^{-5} \text{ M}$

The [**I**⁻] right after mixing:

 $[I^{-}]= 3.0 \times 10^{-3} \text{ M} \times \frac{800.0 \text{ mL}}{1300.0 \text{ mL}} = 1.846 \times 10^{-3} \text{ M}$

Trial Ksp = $[Pb^{2+}][\Gamma]^2$

$$= (7.692 \text{ x } 10^{-5}) (1.846 \text{ x } 10^{-3})^2 = 2.6 \text{ x } 10^{-10}$$

Ksp = 8.5×10^{-9} so Trial Ksp < Ksp

So there is NO PRECIPITATE.

2. If 5.5 grams of AgNO₃ solid is added to 50.0 mL of 2.0 x 10⁻³ M KIO₃ solution, will a precipitate of AgIO₃ form?

Possible precipitate would be AgIO₃

Equilibrium equation: $AgIO_{3(s)} \rightleftharpoons Ag^{+}_{(aq)} + IO_{3(aq)}$

 $Plan : g \rightarrow mol \rightarrow M [AgNO_3]$

5.5 g AgNO₃ x 1 mol =
$$0.03237 \text{ mol AgNO_3}$$

169.9 g

 $[Ag^+] = [AgNO_3] = 0.03237 \text{ mol} = 0.6474 \text{ M}$ 0.0500 L

 $[IO_3] = [KIO_3] = 2.0 \times 10^{-3} M$

Trial Ksp = $[Ag^+]$ $[IO_3^-]$ = (0.6474) (2.0 x 10⁻³) = 1.3 x 10⁻³

The actual Ksp of AgIO₃ is 3.2×10^{-8} so Trial Ksp > Ksp

And there <u>IS</u> a Precipitate

Tutorial 11 Self-Test KEY

3. Find the maximum possible $[IO_3^-]$ in a solution in which $[Pb^{2+}] = 3.0 \times 10^{-4} \text{ M}$. Equilibrium Equation for Precipitate: $Pb(IO_3)_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2 IO_3^-_{(aq)}$

Ksp =
$$[Pb^{2+}][IO_3^-]^2$$

 $[IO_3^-]^2 = \frac{Ksp}{[Pb^{2+}]}$
 $[IO_3^-] = \sqrt{\frac{Ksp}{[Pb^{2+}]}} = \sqrt{\frac{3.7 \times 10^{-13}}{3.0 \times 10^{-4}}} = 3.5 \times 10^{-5} M$

4. If 0.20 M Na₂CO₃ solution is added slowly to a mixture of 0.010 M Ba(NO₃)₂ and 0.010 M AgNO₃, which precipitate would form first. Show all calculations in a logical way.

To find the $[CO_3^{2-}]$ needed to start precipitation of BaCO₃:

$$BaCO_{3(s)} \rightleftharpoons Ba^{2+}(aq) + CO_{3}^{2-}(aq)$$

 $K_{sp} = [Ba^{2+}][CO_3^{2-}]$

 $2.6 \times 10^{-9} = (0.010) \times [CO_3^{2-}]$

$$[CO_3^{2-}] = \underline{2.6 \times 10^{-9}} = 2.6 \times 10^{-7} M$$

0.010

So the $[CO_3^{2-}]$ needed to start precipitation of BaCO₃ is **2.6 x 10⁻⁷ M**

To find the $[CO_3^{2-}]$ needed to start precipitation of Ag₂CO₃:

$$Ag_2CO_{3(s)} \rightleftharpoons 2Ag^+_{(aq)} + CO_3^{2-}_{(aq)}$$

 $Ksp = [Ag^+]^2 [CO_3^{2-}]$

$$[\text{CO}_3^{2-}] = \frac{\text{Ksp}}{[\text{Ag}^+]^2}$$

 $[CO_3^{2-}] = \frac{8.5 \times 10^{-12}}{(0.010)^2} = 8.5 \times 10^{-8} M$

So you would need a lower $[CO_3^{2-}]$ to start precipitation of Ag₂CO₃, so **The Ag₂CO₃ will precipitate first!**