Factors Affecting Equilibrium

Remember:

When a chemical system is at equilibrium, the rate of the forward reaction is equal to the rate of the reverse reaction.

As long as no changes are made to conditions of a system at equilibrium, this situation would just go on forever with no changes in macroscopic properties. We can change it though.

Effect of Temperature

Consider the equilibrium system: $\quad \underset{\substack{\mathbf{N}_{2} \mathrm{O}_{4(\mathrm{~g})}^{\text {colourless }}}}{ }+$ heat $\longleftrightarrow \mathbf{N} \underset{\substack{(\mathrm{g}) \\ \text { brown }}}{\rightleftarrows}$
At equilibrium, NO_{2} is being formed at the same rate as it is being used up, so its concentration is constant. The system is a medium brown colour at room temperature.

Let's look at a potential energy diagram for this reaction (Notice that it is endothermic)

Now, consider the forward reaction and the reverse reaction. Which reaction do you think would be most affected by an increase in temperature? \qquad

increasing the temperature will speed up the forward reaction more than the reverse:

One way to look at it is:

$$
\begin{array}{|l|}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\begin{array}{l}
\text { heat } \\
\uparrow
\end{array} \\
\hline \begin{array}{l}
\text { In an endothermic reaction, the forward } \\
\text { reaction needs heat, so it's rate will be } \\
\text { increased more by an increase in } \\
\text { temperature. }
\end{array} \\
\hline
\end{array}
$$

So, increasing the temperature, the forward reaction is faster than the reverse reaction for awhile: (This can be shown by making the forward arrow longer)

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \longleftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

The NO_{2} is formed faster than it is used up, so it's concentration increases.
The $\mathrm{N}_{2} \mathrm{O}_{4}$ is used up faster than it is formed, so it's concentration decreases.
This might be shown as follows:

$$
N_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \longleftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

Since there are now more molecules of NO_{2} to run into each other,

> The rate of the reverse reaction will also speed up.

Because there is less $\mathrm{N}_{2} \mathrm{O}_{4}$ after awhile, the forward reaction will slow down.

So as you might guess, after awhile, the rate of the reverse reaction will again equal the rate of the forward reaction and again we have equilibrium!(a new equilibrium!)

Draw a graph of how you think the forward and reverse rate would vary with time after the temperature has been increased:

But remember this:

The forward rate was faster than the reverse rate for awhile.(increasing $\left[\mathrm{NO}_{2}\right]$ and decreasing $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$)
But the reverse rate was never faster than the forward rate even though it finally caught up.
If NO_{2} was being formed faster than being used $u p$ for awhile but never used up faster than it was being formed, it's concentration will be higher when the new equilibrium is established. and the $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ will be lower in the new equilibrium.

So, to summarize:

1. Original equilibrium:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\text { heat } \rightleftarrows 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

2. Temperature is increased and the endothermic (forward in this case) reaction rate increases:

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \longleftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

3. A new equilibrium is established in which there is more NO_{2} and less $\mathrm{N}_{2} \mathrm{O}_{4}$.

$$
\underset{\substack{\mathrm{N}_{2} \\ \text { colourless }}}{ } \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \underset{\text { brown }}{\rightleftarrows}
$$

When we have more product(s) than we had before and less reactants we say that:

The equilibrium has shifted to the right

(the stuff on the right has increased and the stuff on the left has decreased)
So what will happen to the colour in flask containing the equilibrium mixture when it is put into boiling water and heated?

If the flask were placed in ice water, the endothermic (forward in this case) reaction would slow down.

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \rightleftarrows 2 \mathrm{NO}_{2_{(\mathrm{g})}}
$$

You would get a situation like this: (The rate of the forward reaction is slower than the rate of the reverse reaction.)

While the reverse reaction is faster than the forward, the $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ will build up and the $\left[\mathrm{NO}_{2}\right.$] will decrease...

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \leftrightarrows 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

So what happens now, since $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is higher, the rate of the forward reaction will gradually increase and after a certain time, it will again be equal to the rate of the reverse reaction.

At this point, we have a new equilibrium!
Draw a graph of how you think the forward and reverse rate would vary with time after the temperature has been decreased:

$$
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}+\text { heat } \leftrightarrows 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

In this equilibrium $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ will be higher than it was originally (for awhile it was being formed faster than it was being used up), and the $\left[\mathrm{NO}_{2}\right]$ will be lower than it was originally.(for awhile it was being used up faster than it was formed.)

We say that the equilibrium has shifted to the left. (or shifted toward the reactant side)

To summarize the effect of temperature:

When the temperature is increased, the endothermic reaction will speed up and the equilibrium will shift toward the side without the heat term.
(A new equilibrium is established in which there is a higher concentration of substances on the side without the heat term and a lower concentration of substances on the side with the heat term.)

When the temperature is decreased, the endothermic reaction will slow down and the equilibrium will shift toward the side with the heat term.
(A new equilibrium is established in which there is a lower concentration of substances on the side without the heat term and a higher concentration of substances on the side with the heat term.)

Effect of Concentration and Partial Pressure

Next, we will consider what happens when we change the concentration of a reactant or the partial pressure of a reactant.

First, we'd better explain the term "partial pressure".
When you have a gas mixture, the pressure exerted by one gas in the mixture is called the partial pressure of that gas. The more of that gas you have, the greater it's partial pressure.

For example: In a certain gas mixture containing NO and CO_{2} gases:

$$
\begin{aligned}
& \text { Partial Pressure of } \mathrm{NO}=40 \mathrm{kPa} \text { (kilopascals-a unit of pressure) } \\
& \text { Partial Pressure of } \mathrm{CO}_{2}=60 \mathrm{kPa} \\
& \text { Total Pressure }=40+60=100 \mathrm{kPa}
\end{aligned}
$$

If you add some NO, it's partial pressure will go up. For example:

$$
\begin{aligned}
& \text { Partial Pressure of } \mathrm{NO}=\mathbf{5 0} \mathbf{~ k P a} \\
& \text { Partial Pressure of } \mathrm{CO}_{2}=60 \mathrm{kPa} \\
& \text { Total Pressure }=50+60=110 \mathrm{kPa}
\end{aligned}
$$

Since a higher partial pressure results from putting more of a certain gas in the same volume, it is really just another way of saying concentration.

That are different quantities in different units (Concentration is in moles/L, Partial pressure is in kPa)
But when one goes up, the other goes up.
From now on, when we mention "Partial Pressure" changes, they will have exactly the same effect as Concentration changes.

Consider the following system at equilibrium:

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})}
$$

Of course, at equilibrium:

$$
\text { the rate of the forward reaction }=\text { the rate of the reverse reaction }
$$

Let's, all of a sudden, $\underline{a d d}$ some CO_{2} to the container that contains all of these. (What we are doing is increasing the $\left[\mathrm{CO}_{2}\right]$ or the partial pressure of CO_{2}.)

$$
\mathrm{CO}_{2(g)}+\mathrm{NO}_{(g)} \rightleftarrows \mathrm{CO}_{(g)}+\mathrm{NO}_{2(g)}
$$

Since the $\left[\mathrm{CO}_{2}\right]$, a reactant is now higher, there will be more chances of collision between CO_{2} and NO , so the forward reaction will speed up.

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \longleftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})}
$$

This will cause the $[\mathrm{CO}]$ and the $\left[\mathrm{NO}_{2}\right]$ to increase and the $\left[\mathrm{CO}_{2}\right]$ and $[\mathrm{NO}]$ to decrease

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{No}_{(\mathrm{g})} \longleftrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2_{(g)}}
$$

Because [CO] and the $\left[\mathrm{NO}_{2}\right]$ have increased, the rate of the reverse reaction will speed u.
When the rate of the reverse reaction is again = the rate of the forward reaction, we will again have equilibrium. (A new equilibrium!)

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{No}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2_{(g)}}
$$

In this new equilibrium, $[\mathrm{CO}]$ and $\left[\mathrm{NO}_{2}\right]$ will be higher than they were originally and $\left[\mathrm{CO}_{2}\right]$ and $[\mathrm{NO}]$ will be lower than they were after we added the CO_{2}.

In this case, the equilibrium is said to have shifted to the right. (or shifted to the product side.)
NOTE: Remember, we added some CO_{2}. In the new equilibrium [CO_{2}] is less than after we added it, but it doesn't quite go down to the level it was before we added any.
[NO] will be quite low because it goes down and we didn't add any.

Try to draw a graph of $\left[\mathrm{CO}_{2}\right]$ vs Time, starting at the original equilibrium and ending after we've reached the new equilibrium?

Try this:
Given the equilibruim: $\quad \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{NO} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})}$

Some NO_{2} is added to the system.

The \qquad reaction will speed up.

This will cause the $\left[\mathrm{CO}_{2}\right]$ and the $[\mathrm{NO}]$ to
Therefore, after awhile, the rate of the \qquad reaction will speed up, and there will be a new equilibrium.

Because the rate of the \qquad reaction was higher for
awhile, in the new equilibrium mixture, the $\left[\mathrm{CO}_{2}\right]$ and the $[\mathrm{NO}]$ will be \qquad
than they were before and the $[\mathrm{CO}]$ and the $\left[\mathrm{NO}_{2}\right]$ will be \qquad than after we added the NO_{2}.

We can say that adding the NO_{2} shifted the equilibrium to the

Try to draw a graph of $\left[\mathrm{NO}_{2}\right]$ vs Time, starting at the original equilibrium and ending after we've reached the new equilibrium?

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{NO}_{2(\mathrm{~g})}
$$

Effects of Changing the Volume of the Container or Total Pressure

One thing to remember from Chemistry 11 here is that:

As the volume of a fixed number of moles of gas is decreased (the gas is compressed), the pressure will increase.

Let's consider the equilibrium: $\quad \mathbf{N N O}_{2(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{\mathbf{4 (g)}}$
brown colourless
Let's say that for some strange reason, we had 2 molecules of NO_{2} only in a certain volume:

Now, suppose we were to completely convert those two molecules of NO_{2} into $\mathrm{N}_{2} \mathrm{O}_{4}$:

$$
2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}
$$

We would now have only 1 molecule (a molecule of $\mathrm{N}_{2} \mathrm{O}_{4}$) in the same volume.

This means there are only half as many molecules hitting the sides of the container, and therefore:

The pressure will be only half of what is was with the 2 molecules of NO_{2} :

Having only 1 molecule means the system only has half the pressure it would have with 2 molecules

So, to summarize:

The greater the number of moles (or molecules) of gas in a particular volume, the greater the pressure.
**
Now, let's get back to the original equilibrium mixture, where we have some NO_{2} and some $\mathrm{N}_{2} \mathrm{O}_{4}$:

$$
\underset{\text { brown }}{2 \mathrm{NO}_{2(\mathrm{~g})}} \rightleftarrows \stackrel{\begin{array}{c}
\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}^{\text {colourless }}
\end{array}}{\stackrel{\text { chen }}{ }}
$$

Let's say we have this system in a syringe and we quickly decrease the volume by pushing the plunger in.

Recall that decreasing the volume is exactly the same thing as increasing the pressure.
Initially, the colour will go darker because everything (including the brown NO_{2}) is compressed.

However, when you increase the pressure on something, there is a natural tendency for the system to do anything it can in order to offset that increase.
(For example, when you squish a balloon in one place, the air will be forced to another place and the balloon will bulge somewhere else, or the balloon will pop to decrease the pressure!)

When we increase the pressure on the $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ system, it can offset that increase by:
converting more $\mathrm{NO}_{\mathbf{2}}$ into $\mathrm{N}_{2} \mathrm{O}_{\mathbf{4}}$! (going from 2 mog to 1 mog)
$\underset{\text { brown }}{\mathbf{N N O}_{2(\mathrm{~g})}} \rightleftarrows \underset{\text { colourless }}{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}}$
in other words: shifting to the side with less moles of gas. (as shown by the coefficients)
This "shift to the right" will use up some brown $\mathbf{N O}_{2}$ converting it to colourless $\mathrm{N}_{2} \mathrm{O}_{4}$, and the colour of the system will gradually get lighter again.

So, in summary:

When the total pressure is increased (volume is decreased) in an equilibrium system with gases, the equilibrium will shift toward the side with less moles of gas in the equation.
or, as you might guess:

When the total pressure is decreased (volume is increased) in an equilibrium system with gases, the equilibrium will shift toward the side with more moles of gas in the equation.

Now, try the following problem:
Given the equilibrium: $\quad \mathbf{2 C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}(\mathrm{g})}+\mathbf{7 O}_{\mathbf{2}(\mathrm{g})} \rightleftarrows \mathbf{4 C O}_{\mathbf{2}(\mathrm{g})}+\mathbf{6} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$
a) Increasing the total pressure on this system, will cause a shift to the side with \qquad moles of gas, which in this case is the \qquad side.
b) Decreasing the total pressure on this system, will cause a shift to the side with \qquad moles of gas, which in this case is the \qquad side.
c) Increasing the total volume on this system (the same as \qquad
the total pressure) will cause a shift to the side with \qquad
moles of gas, which in this case is the \qquad side.
d) Decreasing the total volume on this system (the same as \qquad
the total pressure) will cause a shift to the side with \qquad
moles of gas, which in this case is the \qquad side.

Effect of Catalysts

Consider the equilibrium system: $\quad \underset{\text { colourless }}{\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}}+$ heat $\rightleftarrows 2 \mathrm{NO}_{\substack{(\mathrm{g}) \\ \text { brown }}}^{\rightleftarrows}$
Adding a catalyst to this system would decrease the activation energy by providing a different route (or mechanism) for the reaction: (see the Potential Energy Diagram on the next page.)

Using a catalyst to provide a route will decrease the activation energy for the forward reaction and for the reverse reaction by the same amount.

This means the forward reaction will speed up, but so will the reverse reaction.
In fact, the rates of both the forward and reverse reactions will still remain equal to each other (even though they are both faster.)
Therefore, the equilibrium will not shift!

Adding a catalyst to a system not at equilibrium will simply speed things up so that equilibrium will be attained faster. It does not alter any of the concentrations etc. at equilibrium!

To summarize, equilibrium is affected by:

1. Temperature - If the temp. is increased, the equilibrium will shift toward the side without the heat term.
-If the temp. is decreased the equilibrium will shift toward the side with the heat term.
2. Concentration

- If the [a reactant] is increased, the equilibrium will shift toward the right (the product side)
- If the [a product] is increased, the equilibrium will shift toward the left (the reactant side)

3. Partial Pressure of Gases - the same effects as concentration.
4. Total Volume and Total Pressure

- If pressure is increased (volume decreased), the equilibrium will shift to the side with less moles of gas.
- If the pressure is decreased (volume increased), the equilibrium will shift toward the side with more moles of gas.

5. Catalysts - Have no effect on equilibrium. They may help a system reach equilibrium faster, that's all!

Here are some questions:

1. When a chemical system is at equilibrium, when the temperature is increased, the
\qquad othermic reaction speeds up the most.
2. In the reaction: $\mathbf{A}+\mathbf{B} \mathbf{C}+\mathbf{4 3 . 3} \mathbf{k J}$
a) When the temperature is increased the (forward/reverse) reaction speeds up more.
b) During this time, the [A] and [B] will \qquad crease and the [C] will
\qquad crease.
c) Because $[\mathrm{A}]$ and [B] are \qquad creasing, the rate of the \qquad reaction will increase.

$\mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{C}+43.3 \mathrm{~kJ}$

d) Sooner or later, the forward rate and the reverse rate will again become
\qquad _.

At this point a new \qquad is established.
e) In the new equilibrium, $[\mathrm{A}]$ and $[\mathrm{B}]$ will be \qquad er than they were before the temperature is increased.

In the new equilibrium, $[\mathrm{C}]$ will be \qquad er than it was before.
f) In this example, we say that the equilibrium has shifted to the \qquad
3. Given the reaction: $\mathbf{A}+\mathbf{B} \rightleftarrows \mathbf{C}+\mathbf{4 3 . 3} \mathbf{k J}$
a) When the temperature is decreased the (forward/reverse) reaction will be the faster one.
b) During this time, the $[\mathrm{A}]$ and $[\mathrm{B}]$ will \qquad crease and the [C] will
\qquad crease.
c) Because [C] is \qquad creasing, the rate of the \qquad reaction will increase.
d) Sooner or later, the forward rate and the reverse rate will again become \qquad .

At this point a new \qquad is established.
e) In the new equilibrium, [A] and [B] will be \qquad er than they were before the temperature is increased.

In the new equilibrium, $[\mathrm{C}]$ will be \qquad er than it was before.
f) In this example, we say that the equilibrium has shifted to the \qquad
4. In the reaction: $\mathbf{A}+\mathbf{B}+\mathbf{3 2 4} \mathbf{k J} \rightleftarrows \mathbf{C}$
a) When the temperature is increased the (forward/reverse) \qquad reaction speeds up more.
b) During this time, the $[\mathrm{A}]$ and $[\mathrm{B}]$ will \qquad crease and the [C] will crease.
c) Because [C] is \qquad creasing, the rate of the \qquad reaction will increase.

$$
A+B+324 \mathrm{~kJ} \rightleftarrows \mathrm{C}
$$

d) Sooner or later, the forward rate and the reverse rate will again become \qquad -

At this point a new \qquad is established.
e) In the new equilibrium, $[\mathrm{A}]$ and $[\mathrm{B}]$ will be \qquad er than they were before the temperature is increased.

In the new equilibrium, $[\mathrm{C}]$ will be \qquad er than it was before.
f) In this example, we say that the equilibrium has shifted to the \qquad
5. Given the equilibrium: $\mathbf{B}_{(\mathrm{g})}+\mathbf{C}_{(\mathrm{g})} \rightleftarrows \mathbf{D}_{(\mathrm{g})}+\mathbf{E}_{(\mathrm{g})}+$ heat
a) Some B is added to the mixture at equilibrium. The rate of the
reaction will increase due to the increase in the $[B]$.
b) While this is happening, the [D] and [E] will gradually \qquad crease.
c) The \qquad crease in the [D] and [E] will cause the rate of the \qquad reaction to increase.
d) When the rates of the forward and reverse reactions are equal, we have a new
e) Due to the addition of B, the equilibrium will shift to the \qquad [B] and [C] will \qquad crease and [D] and [E] will \qquad crease
6. Given the equilibrium: $\mathbf{B}_{(\mathrm{g})}+\mathbf{C}_{(\mathrm{g})} \rightleftarrows \mathbf{D}_{(\mathrm{g})}+\mathbf{E}_{(\mathrm{g})}+$ heat
a) Some D is added to the mixture at equilibrium. The rate of the reaction will increase due to the increase in the [D].
b) While this is happening, the $[\mathrm{B}]$ and $[\mathrm{C}]$ will gradually \qquad crease.
c) The \qquad crease in the $[\mathrm{B}]$ and $[\mathrm{C}]$ will cause the rate of the \qquad reaction to increase.
d) When the rates of the forward and reverse reactions are equal, we have a new

$$
\mathbf{B}_{(\mathrm{g})}+\mathbf{C}_{(\mathrm{g})} \longleftrightarrow \mathbf{D}_{(\mathrm{g})}+\mathbf{E}_{(\mathrm{g})}+\text { heat }
$$

e) Due to the addition of D, the equilibrium will shift to the \qquad
[B] and [C] will \qquad crease and [D] and [E] will \qquad crease.
7. Given the equilibrium: $\quad \mathbf{2 A}_{(\mathbf{g})}+\mathbf{B}_{(\mathbf{g})} \rightleftarrows \mathbf{2} \mathbf{C}_{(\mathrm{g})}$
a) If the total pressure on the system is increased, the \qquad reaction will speed up the most.
b) While this is happening, the [C] will \qquad crease.
c) This \qquad crease in [C] will cause the \qquad reaction to speed up.
d) When the new equilibrium is reached, the [A] and [B] will be \qquad er than before and the [C] will be \qquad than before.
e) We say that the increase in total pressure has caused the equilibrium to shift to the
\qquad -.
8. Given the equilibrium: $\quad \mathbf{2 A}_{(\mathrm{g})}+\mathbf{B}_{(\mathrm{g})} \rightleftarrows \mathbf{2 C}_{(\mathrm{g})}$
a) If the total pressure on the system is decreased, the \qquad reaction will be the faster one.
b) While this is happening, the [A] and the [B] will \qquad crease.
c) This \qquad crease in [A] and the [B] will cause the reaction to speed up.
d) When the new equilibrium is reached, the $[\mathrm{A}]$ and $[\mathrm{B}]$ will be \qquad er than before and the [C] will be \qquad than before.
e) We say that the decrease in total pressure has caused the equilibrium to shift to the
9. Given the equilibrium : $\mathbf{N O}_{(\mathrm{g})}+\mathbf{C O}_{2(\mathrm{~g})} \rightleftarrows \mathrm{NO}_{2(\mathrm{~g})}+\mathbf{C O}_{(\mathrm{g})}$
a) Will an increase in total pressure have an affect on the equilibrium? \qquad
b) Explain your answer to question (a) \qquad
10. Given the equilibrium: $\quad \mathbf{2 A}_{(\mathrm{g})}+\mathbf{B}_{(\mathrm{g})} \rightleftarrows \mathbf{2} \mathbf{C}_{(\mathrm{g})}$
a) If the total volume of the system is decreased, the \qquad will increase, and the \qquad reaction will be the faster one.
b) While this is happening, the [C] will \qquad crease.
c) This \qquad crease in [C] will cause the \qquad reaction to speed up.
d) When the new equilibrium is reached, the $[\mathrm{A}]$ and $[\mathrm{B}]$ will be \qquad er than before and the $[\mathrm{C}]$ will be \qquad than before.
e) We say that the decrease in total volume has caused the equilibrium to shift to the
11. Given the equilibrium: $\quad \mathbf{2 A}_{(\mathrm{g})}+\mathbf{B}_{(\mathrm{g})} \rightleftarrows \mathbf{2} \mathbf{C}_{(\mathrm{g})}+$ heat
a) How will this equilibrium be affected if a catalyst is added to the mixture? \qquad
b) Explain your answer to "a" in terms of forward and reverse reaction rates

