Chem 12- Notes on Acids \& Bases

After Tutorial 14 \& Workbook Questions 10-19 p. 115-121
Do demo of Conductivity $1 \mathrm{M} \mathrm{HCl}, 1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$

Strong \& Weak Acids \& Bases

Strong Acid- An acid which is 100% ionized in a water solution.

E.g.) $\mathrm{HCl}_{\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{Cl}_{\text {(aq) }}$

Single a rrow (goes to completion)三Strong acid

Question: What is the $\left[\mathrm{HCl}_{\mathrm{g})}\right]$ in 1 M HCl ?
Answer:
Question: What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.20 M HCl
Answer:

Important:

$$
\text { In a Strong Acid }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\text {Acid }] \quad \text { (to Start with) }
$$

E.g.) What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $0.60 \mathrm{M} \mathrm{HNO}_{3}$

Answer:
Weak Acid: An Acid which is less than 100% ionized in solution.
(In Chem 12 WA's are usually significantly less than 100% ionized.)
(Usually < 5\% ionized)

- In a solution of a weak acid, most of the molecules $\underline{d o n ' t}$ ionize.
E.g.) $\mathrm{HF}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \leftrightarrows \quad \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}^{-}{ }_{(\mathrm{aq})} \leftarrow$ ions (Molecules) (Double arrow)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is only a small fraction of [HF]

$$
\begin{aligned}
& \text { NOTE: WA's can be molecules but they } \\
& \text { might also be }+ \text { or }- \text { ions. } \\
& \text { E.g.) } \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \\
& \mathrm{HSO}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}
\end{aligned}
$$

- Any acid (weak or strong) could have high or low concentration.

Weak \& Strong \rightarrow refers to \% ionization.
Concentration \rightarrow the moles of acid dissolved per litre.
Eg.) $10.0 \mathrm{M} \mathrm{HCl} \rightarrow$ conc. and strong $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10.0 \mathrm{M}$
$0.001 \mathrm{M} \mathrm{HCl} \rightarrow$ dilute and strong $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.001 \mathrm{M}$
$10.0 \mathrm{M} \mathrm{HF} \rightarrow$ conc. and weak $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$low
$0.001 \mathrm{M} \mathrm{HF} \rightarrow$ dilute and weak $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$very low

Strong Acids

*Note $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a SA but diprotic

- The first ionization is $100 \%=\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$
- The second ionization is $<100 \% \mathrm{HSO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2}$

Weak Acids

 arrow
$\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}^{+}+\mathrm{OH}^{-}$

Most act as weak acids in water

Single arrows going backwards
(O^{2-} and H^{+}can form OH^{-}but OH^{-}cannot form H^{+}and O^{2-} in water solution.)

Strong Base

A substance (base) which (ionizes) or dissociates 100% in solution

E.g.) $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

- Consists of mostly $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} molecules with a few $\mathrm{NH}_{4}{ }^{+}$and OH^{-}ions.

Using Acid Table \& Periodic Table

Bases on Right Side

Strong Bases

- Any substance which dissociates completely to produce $\mathrm{OH}, \mathrm{O}^{2-}$ or $\mathrm{NH}_{2}{ }^{-}$is a Strong Base

Alkali Metal Hydroxides (Group 1)

$\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}$ are all highly (100\%) soluble and form OH^{-}, so they are all strong bases.

(Alkaline Earth) Hydroxides (Group 2)

$\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}$ are designated as Strong Bases (even though $\mathrm{Sr}(\mathrm{OH})_{2}$ is the only one called "Soluble" on the Solubility Table. They dissociate to form $2 \mathrm{OH}^{-}$s each:

$$
\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{~s})} \rightarrow \mathrm{Ba}_{(\mathrm{aq})}^{2+}+2 \mathrm{OH}_{(\mathrm{aq})}^{-}
$$

What is the $\left[\mathrm{OH}^{-}\right]$in 0.10 M NaOH ?

$$
\begin{aligned}
& 0.10 \mathrm{M} \\
& \mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
\end{aligned} \quad\left[\mathrm{OH}^{-}\right]=0.10 \mathrm{M}
$$

What is the $\left[\mathrm{OH}^{-}\right]$in $0.10 \mathrm{M} \mathrm{Ba}\left(\mathrm{OH}_{2}\right.$?

$$
\underset{\mathrm{Ba}(\mathrm{OH})_{2}}{0.10 \mathrm{M}}{\overline{\mathrm{Ba}^{2+}}}^{\mathrm{M}}+\frac{\mathrm{2OH}}{}{ }^{\mathrm{M}}
$$

For A Strong Base

$$
\left[\mathrm{OH}^{-}\right]=[\text {Base }] \text { x \# of OH's in formula }
$$

Salts which produce O^{2-} and NH_{2}^{-}are definitely strong bases.
E.g.) Quicklime in water: $\mathrm{CaO}_{(\mathrm{s})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{O}^{2-}{ }_{(\text {aq })}$
$\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{OH}^{-}$
(Oxide ion) (100\%)
Or $\mathbf{O}^{\mathbf{2 -}}+\mathbf{H}_{\mathbf{2}} \mathbf{O} \rightarrow \mathbf{2 O H} \longrightarrow \begin{aligned} & \text { This is a VERY important } \\ & \text { equation. Remember it! }\end{aligned}$
Find $\left[\mathrm{OH}^{-}\right]$in 0.10 M CaO

$$
\left[\mathrm{O}^{2-}\right]=0.10 \mathrm{M}
$$

$$
\underset{\mathrm{O}^{2-}}{(0.10 \mathrm{M})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MH}^{-}
$$

$\left[\mathrm{OH}^{-}\right]=$ \qquad M

Weak Bases

Found above OH^{-}on $\underline{r i g h t}$ side of Table.

Very Weak (non-hydrolyzing Bases) or Spectators

These are the top $\mathbf{5}$ (not 6) "bases" on the right.

In a SA, the bond to H^{+}is weak

SA's have non-hydrolyzing (spectator) ions for conj. Bases.

Amphiprotic Species (ions or molecules)

- are found on both sides of the table e.g.) $\mathrm{HSO}_{4}{ }^{-}$
- can act as acids (donate H^{+}'s) or as bases (accept H^{+}'s)
- to look at an amphiprotic species as an acid, you must find it on the left side:

$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er acid than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ $\mathrm{HCO}_{3}{ }^{-}$is a \qquad er acid than $\mathrm{H}_{2} \mathrm{O}_{2}$
- to look at an amphiprotic species as a base, you must find it on the right side: for $\mathrm{HCO}_{3}{ }^{-}$as a base:

$$
\begin{array}{ll|l}
\text { e.g.) } & \leftrightarrows & \mathrm{H}^{+}+\mathrm{Al}_{1}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+} \\
& \leftrightarrows & \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \leftarrow \\
& \leftrightarrows & \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}
\end{array}
$$

$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er base than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{3-}$ $\mathrm{HCO}_{3}{ }^{-}$is a \qquad er base than $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}$
$\mathrm{HSO}_{4}{ }^{-}$in shaded region on top right will not act as a base in water (Too weak of a base)

- However, it is not a spectator! (like $\mathrm{NO}_{3}{ }^{-}$is) Why not?
$\left(\mathrm{HSO}_{4}{ }^{-}\right.$is also found on the left side quite a way up, it is a relatively "strong" weak acid.)
The Leveling Effect for Acids
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$?
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{HNO}_{3}$?
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 1.0 M HCl ?
\qquad
\qquad
Acids from HClO_{4} to $\mathrm{H}_{2} \mathrm{SO}_{4}$ are 100% ionized in water
only solvent used in Chem 12 (and most Chemistry)
- so even though HClO_{4} is above HCl on the chart, it is no more acidic in a water solution.
$\mathrm{H}_{3} \mathrm{O}^{+}$is the strongest acid that can exist in an undissociated form in water solution. all stronger acids ionize to form $\mathrm{H}_{3} \mathrm{O}^{+}$
(NOTE: although $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diprotic, the $\mathrm{H}_{3} \mathrm{O}^{+}$produced from the second ionization is very little compared to that from the first)

The only way you can tell which strong acid is "stronger" is to react them in a non-aqueous (not $\mathrm{H}_{2} \mathrm{O}$) solvent.
$\mathrm{Eg}) \mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrows \mathrm{H}_{3} \mathrm{SO}_{4}^{+}+\mathrm{ClO}_{4}{ }^{-}$
(it is found that HClO_{4} donates a proton to $\mathrm{H}_{2} \mathrm{SO}_{4}$, not the other way around, so HClO_{4} is a stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$) This is not important in Chemistry 12.

This would not happen in a water solution.
(In $\mathrm{H}_{2} \mathrm{O}$, they would both form $\mathrm{H}_{3} \mathrm{O}^{+}$)

Leveling Affects of Bases

The strongest base which can exist in high concentrations in water solution is OH The two stronger bases below it will react with water completely to form $\mathbf{O H}$.

Eg) $\quad \mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{OH}^{-}+\mathrm{OH}^{-}$

What is the final $\left[\mathrm{O}^{2-}\right]$ in $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{O}$? Answer: 0 M

- All the O^{2-} will react with water to form OH^{-}

$$
\xrightarrow{1.0 \mathrm{M} \xrightarrow[\mathrm{O}^{2-}]{ }+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-} \quad \text { so }\left[\mathrm{OH}^{-}\right]=2.0 \mathrm{M}}
$$

Write an equation for $\mathrm{NH}_{2}{ }^{-}$reacting with $\mathrm{H}_{2} \mathrm{O}$.
Answer: \qquad

- Do Ex. 21-27 Pg.125-126 S.W.

Acid-Base Equilibria \& Relative Strengths of Acids \& Bases

- Take out your acid table
- Mix some $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$and some $\mathrm{CO}_{3}{ }^{2-}$

So, in this case $\mathrm{CO}_{3}{ }^{2-}$ will play the role of base (take H^{+}) and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$will play the role of acid (donate an H^{+}).
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{CO}_{3}{ }^{2-} \leftrightarrows \mathrm{HCO}_{3}{ }^{-}+\mathrm{HPO}_{4}{ }^{2-}$

Question: At equilibrium, which will be favoured, reactants or products?
They both "want" to donate protons.

- look them both up on the left side

$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is above $\mathrm{HCO}_{3}{ }^{-}$on LEFT, so $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is a stronger acid than $\mathrm{HCO}_{3}{ }^{-}$.

So the reaction:

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{CO}_{3}^{2-} \leftrightarrows \mathrm{HCO}_{3}^{-}+\mathrm{HPO}_{4}^{2-}
$$

Will have a greater tendency to go right than left and products will be favoured.

- so find acid on each side. Equilibrium favors the side with the weaker acid.
"Only the weak survive" or "Survival of the weakest"
"stronger" means a greater tendency to react and change to something else.

Don't use terms "strong" and "weak", they have other specific meanings.

Question: Will

$$
\mathrm{HSO}_{3}^{-}+\mathrm{HCO}_{3}^{-} \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{SO}_{3}^{2-}
$$

Favor reactants or products?
Mixing 2 amphrotic ions (products not given)
-complete rx. and tell which is favoured (r or p)
eg.) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow$?

Which will play role of acid?
(both are capable of being acids or bases)

- First, compare these two on LEFT side
$\mathrm{HSO}_{4}{ }^{-}$is higher than $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$on LEFT side so has a greater tendency to act as an acid.

- Complete the equation: (making $\mathrm{HSO}_{4}{ }^{-}$act as the acid.)

Now compare the 2 conjugate acids (Look fo them both on the LEFT side of chart.) $\mathrm{HSO}_{4}{ }^{-}$is slightly $\mathrm{ABOVE} \mathrm{H}_{3} \mathrm{PO}_{4}$ on the left side so $\mathrm{HSO}_{4}{ }^{-}$is the SrA and $\mathrm{H}_{3} \mathrm{PO}_{4}$ is the WrA. $\mathrm{HSO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \leftrightarrows \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{4}^{2-}$ so the products (with WrA,) are favoured! SrA WrA
-Comparing realtive stengths of bases.
E.g.) $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \leftrightarrows \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{4}{ }^{2-}$

Compare these on the RIGHT side of table
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is lower on the right side(stronger base) than $\mathrm{SO}_{4}{ }^{2-}$
So see:

$$
\begin{aligned}
& \mathrm{HSO}_{4}^{-} \\
& \mathrm{SrA} \\
& \mathrm{SrA} \\
& \mathrm{HrB}
\end{aligned} \underset{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}{\leftrightarrows} \underset{\mathrm{WrA}}{\mathrm{H}_{3} \mathrm{PO}_{4}}+\underset{\mathrm{WrB}}{\mathrm{SO}_{4}^{2-}}
$$

-Since this equilm favoured products $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right.$ is WrA$)$, we can say that equilm favours the side with the weaker conjugate base.

NOTICE: The SrA is on the same side as the SrB . [the SrA has the weaker conj. Base] The WrA is on the same side as the WrB
(Birds of a feather flock together)
or
(The weakies hang out together and survive better than the "strongies".)

- So we could compare conj. Acids or conj. Bases. Equil ${ }^{m}$ favors the side with the weaker conj. Acid and the weaker conj. Base.

Starting with "Salts"

The amphiprotic ions are often products of the dissociation of salts.

- Spectator ions must be discarded.

NOTE: All alkali ions $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Li}^{+}$...etc..... are spectators in Acid-Base reactions. Also top five ions right side of acid chart ($\left.\mathrm{ClO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}, \mathrm{NO}_{3}{ }^{-}\right)$are spectators in Acid-Base reactions.
E.g.) complete the net ionic reaction between and state whether equilm favors reactants or products

$\mathrm{HSO}_{3}{ }^{-}$is higher, so it will play the role of the acid.
$\begin{array}{ll}\mathrm{HSO}_{3}^{-} \\ \mathrm{SrA} & \underset{\mathrm{B}}{\mathrm{HPO}_{4}{ }^{2-}} \underset{\mathrm{B}}{\leftrightarrows} \underset{\text { WrA }}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}+\underset{\mathrm{BO}}{3}{ }^{2-}\end{array}$
$\mathrm{HSO}_{3}{ }^{-}$is a stronger acid than $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, so equilm favors the side with the weaker acid $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$so products are favored!

Relating The Keq to A-B equilibria

If products are favored Keq is large (>1)
If reactants are favored Keq is small (<1)
Eg.) Given:

$$
\mathrm{HA}+\mathrm{B}^{-} \leftrightarrows \mathrm{HB}+\mathrm{A}^{-} \quad \mathrm{Keq}=0.003
$$

Which acid is stronger, HA or HB?
Keq is small so reactant side is favored.
Since equilm favors side with WrA, HA must be the weaker acid, so HB would be the stronger acid.

- Which is the stronger base?

Ans. \qquad
(the SrB is on the same side as the SrA)
or
(the weaker acid (HA) has the stronger conj. Base (A^{-}))
-Do Ex. 38-46 P. 133 of SW.

