Chem 12- Notes on Acids & Bases

After Tutorial 14 & Workbook Questions 10-19 p. 115-121 Do demo of Conductivity 1 M HCl, 1 M CH₃COOH

Strong & Weak Acids & Bases

Strong Acid- An acid which is 100% ionized in a water solution.

Question: What is the [HClg] in 1 M HCl?

Answer:

Question: What is [H₃O⁺] in 0.20 M HCl

Answer:

Important:

In a **Strong Acid** $[H_3O^+] = [Acid]$ (to Start with)

E.g.) What is $[H_3O^+]$ in 0.60 M HNO₃

Answer:

Weak Acid: An Acid which is less than 100% ionized in solution.

(In Chem 12 WA's are usually significantly less than 100% ionized.) (Usually < 5% ionized)

- In a solution of a *weak acid*, most of the molecules <u>don't</u> ionize.

E.g.)
$$HF_{(g)} + H_2O_{(l)} \leftrightarrows H_3O^+_{(aq)} + F^-_{(aq)} \leftarrow ions$$
 (Molecules) (Double arrow)

[H₃O⁺] is only a small fraction of [HF]

- Any acid (weak or strong) could have high or low concentration.

Weak & Strong → refers to % ionization.

<u>Concentration</u> → the <u>moles</u> of acid dissolved <u>per litre</u>.

Eg.) 10.0 M HCl
$$\rightarrow$$
 conc. and strong [H₃O⁺] = 10.0 M
0.001 M HCl \rightarrow dilute and strong [H₃O⁺] = 0.001 M
10.0 M HF \rightarrow conc. and weak [H₃O⁺] = low
0.001 M HF \rightarrow dilute and weak [H₃O⁺] = very low

Concentration of ions would determine conductivity

Double

arrow

*Note H₂SO₄ is a SA but diprotic

- The first ionization is $100\% = H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^-$
- The second ionization is <100% HSO₄⁻ + H₂O \leftrightarrows H₃O⁺ + SO₄²

Weak Acids

OH⁻
$$\leftarrow$$
 H⁺ + O²⁻ Bottom 2 on left NEVER act as acids in water (too weak as acids)

Single arrows going backwards

(O²⁻ and H⁺ can form OH⁻ but OH⁻ cannot form H⁺ and O²⁻ in water solution.)

Strong Base

A substance (base) which (ionizes) or dissociates 100% in solution

Weak Base

A base which is less than 100% ionized in solution.

E.g.)
$$NH_{3(aq)} + H_2O_{(l)} \Rightarrow NH_4^+_{(aq)} + OH^-_{(aq)}$$
A neutral molecule

Consists of mostly H₂O and NH₃ molecules with a few NH₄⁺ and OH⁻ ions.

Using Acid Table & Periodic Table

Bases on Right Side

Strong Bases

$$\rightarrow$$
 OH⁻
 \rightarrow O²⁻
 \rightarrow NH₂ Strong bases (bottom 3 on right side)

Any substance which dissociates completely to produce OH, O²⁻ or NH₂⁻ is a Strong Base

Alkali Metal Hydroxides (Group 1)

LiOH, NaOH, KOH, RbOH, CsOH are all highly (100%) soluble and form OH, so they are all *strong bases*.

(Alkaline Earth) Hydroxides (Group 2)

Mg(OH)₂ Ba(OH)₂, Sr(OH)₂ are designated as Strong Bases (even though Sr(OH)₂ is the only one called "Soluble" on the Solubility Table. They dissociate to form 2 OH s each:

$$Ba(OH)_{2(s)} \xrightarrow{} Ba^{2+}_{(aq)} + 2OH^{\text{-}}_{(aq)}$$

What is the [OH⁻] in 0.10 M NaOH?

$$0.10 \text{ M}$$
 0.10 M 0.10 M
NaOH_(s) \rightarrow Na⁺_(aq) + OH⁻_(aq) [OH⁻] = 0.10 M

What is the $[OH^-]$ in 0.10 M Ba $(OH)_2$?

$$0.10 \text{ M} \xrightarrow{\text{Ba}^{2+}} \text{M} \xrightarrow{\text{2OH}^{-}} \text{M}$$

For A Strong Base

$$[OH^{-}] = [Base] x # of OH's in formula$$

Salts which produce O^{2-} and NH_2^- are **definitely strong bases**.

E.g.) Quicklime in water: $CaO_{(s)} \rightarrow Ca^{2+}_{(aq)} + O^{2-}_{(aq)}$

$$O^{2^{-}} + H_{2}O \rightarrow OH^{-} + OH^{-}$$
(Oxide ion) (100%)

This is a VERY important equation. Remember it!

Find [OH] in 0.10 M CaO

$$[O^{2^{-}}] = 0.10 \text{ M}$$

$$(0.10\text{M}) \qquad \underline{\qquad} \text{M}$$

$$O^{2^{-}} + \text{H}_{2}\text{O} \rightarrow 2\text{OH}^{-}$$

$$[O\text{H}^{-}] = \underline{\qquad} \text{M}$$

Weak Bases

Found above OH on *right* side of Table.

Very Weak (non-hydrolyzing Bases) or Spectators

These are the top 5 (not 6) "bases" on the right.

Conj. Bases of strong acids---- In acid-base reactions they are **SPECTATORS**

SA's have non-hydrolyzing (**spectator**) ions for conj. Bases.

Amphiprotic Species (ions or molecules)

- are found on **both** sides of the table e.g.) HSO₄
- can act as acids (donate H⁺'s) or as bases (accept H⁺'s)
- to look at an amphiprotic species as an **acid**, you must find it on the **left** side:

Acid Strength Increases
$$e.g.$$
) $C_6H_5OH \leftrightarrows HCO_3$ $\leftrightarrows H_2O_2 \leftrightarrows$

 HCO_3^- is a _____er acid than C_6H_5OH HCO_3^- is a ____er acid than H_2O_2

to look at an amphiprotic species as a <u>base</u>, you must find it on the <u>right</u> side: for HCO_3^- as a **base**:

e.g.)
$$\stackrel{\leftarrow}{\Rightarrow}$$
 $H^+ + Al(H_2O)_5(OH)^{2+}$ Base Strength Increases

 HCO_3^- is a _____er base than $C_6H_5O_7^{3-}$ HCO_3^- is a ____er base than $Al(H_2O)_5(OH)^{2+}$

 HSO_4^- in shaded region on top right will <u>not</u> act as a base in water (Too weak of a base)

- However, it is **not** a spectator! (like NO₃⁻ is) Why not?

(HSO₄ is also found on the left side quite a way up, it is a relatively "strong" weak *acid*.)

The Leveling Effect for Acids

What is
$$[H_3O^+]$$
 in 1.0 M H_3O^+ ?

What is $[H_3O^+]$ in 1.0 M HNO₃?

What is $[H_3O^+]$ in 1.0 M HCl?

Acids from HClO₄ to H₂SO₄ are 100% ionized in water

only solvent used in Chem 12 (and most Chemistry)

so even though HClO₄ is above HCl on the chart, it is no more acidic in a water solution.

 H_3O^+ is the <u>strongest acid</u> that can exist in an undissociated form in water solution. - all stronger acids <u>ionize</u> to form H_3O^+ (NOTE: although H_2SO_4 is diprotic, the H_3O^+ produced from the second ionization is very little compared to that from the first)

The only way you can tell which strong acid is "stronger" is to react them in a non-aqueous (not H₂O) solvent.

Eg)
$$HClO_4 + H_2SO_4 \leftrightarrows H_3SO_4^+ + ClO_4^-$$

(it is found that $HClO_4$ donates a proton to H_2SO_4 , not the other way around, so $HClO_4$ is a stronger acid than H_2SO_4) *This is not important in Chemistry 12.*

This would <u>not</u> happen in a water solution. (In H₂O, they would **both** form H₃O⁺)

Leveling Affects of Bases

The strongest base which can exist in high concentrations in water solution is OH The two stronger bases below it will react with water completely to form OH.

Eg)
$$O^{2-} + H_2O \rightarrow OH^- + OH^-$$
SB
Or
 $O^{2-} + H_2O \rightarrow 2OH^-$
Single
Arrow

What is the final $[O^{2-}]$ in 1.0 M Na₂O ? Answer: 0 M

- All the O²⁻ will react with water to form OH⁻

$$1.0M$$
 \longrightarrow 2.0 M
O²⁻ + H₂O \longrightarrow 2OH⁻ so [OH⁻] = 2.0 M

Write an equation for NH_2^- reacting with H_2O .

Answer: _____

- Do Ex. 21-27 Pg.125-126 S.W.

Acid-Base Equilibria & Relative Strengths of Acids & Bases

- Take out your acid table
- Mix some H₂PO₄ and some CO₃²-

Can only act as a base (accept an H⁺) (doesn't have an H⁺ to give

So, in this case CO_3^{2-} will play the role of base (take H^+) and $H_2PO_4^-$ will play the role of acid (donate an H^+).

Consider the $\frac{2}{3}$ acids H_2PO_4 and HCO_3

Question: At equilibrium, which will be favoured, reactants or products? They both "want" to donate protons.

- look them both up on the left side

H₂PO₄ is *above* HCO₃ on LEFT, so H₂PO₄ is a *stronger* acid than HCO₃.

So the reaction:

$$H_2PO_4^- + CO_3^{2-} \leftrightarrows HCO_3^- + HPO_4^{2-}$$

Will have a greater tendency to go <u>right</u> than <u>left</u> and <u>products</u> will be favoured. - so find acid on each side. **Equilibrium favors the side with the weaker acid.**

"Only the weak survive" or "Survival of the weakest"

"stronger" means a greater tendency to react and change to something else.

Don't use terms "strong" and "weak", they have other specific meanings.

Question: Will

$$HSO_3^- + HCO_3^- \leftrightarrows H_2CO_3 + SO_3^{2-}$$

Favor reactants or products?

Mixing 2 amphrotic ions (products not given)

-complete rx. and tell which is favoured (r or p)

eg.)
$$HSO_4^- + H_2PO_4^- \rightarrow ?$$

Which will play role of acid? (both are capable of being acids or bases)

- First, compare these two on LEFT side

HSO₄ is higher than H₂PO₄ on LEFT side so has a greater tendency to act as an acid.

HA! HA! I win. I get to give you my proton. You have to act as the base!

I always knew you were a bigger loser than I am! - Complete the equation: (making HSO₄⁻ act as the acid.)

Now compare the 2 conjugate acids (Look fo them <u>both</u> on the LEFT side of chart.) HSO₄ is slightly ABOVE H₃PO₄ on the left side so HSO₄ is the SrA and H₃PO₄ is the WrA.

$$HSO_4^- + H_2PO_4^- \leftrightarrows H_3PO_4 + SO_4^{2-}$$
 so the products (with WrA,) are favoured!
SrA WrA

-Comparing realtive stengths of bases.

E.g.)
$$HSO_4^- + H_2PO_4^- \leftrightarrows H_3PO_4 + SO_4^{2-}$$

Base Base Compare these on the RIGHT side of table

H₂PO₄ is lower on the right side(stronger base) than SO₄²-

So see:

$$HSO_4^- + H_2PO_4^- \iff H_3PO_4 + SO_4^{2-}$$

SrA SrB WrA WrB

-Since this equilm favoured products (H_3PO_4 is WrA), we can say that equilm favours the side with the <u>weaker conjugate base</u>.

NOTICE: The SrA is on the same side as the SrB. [the SrA has the weaker conj. Base] The WrA is on the same side as the WrB

or

(The weakies hang out together and survive better than the "strongies".)

- So we could compare conj. Acids or conj. Bases. Equil favors the side with the weaker conj. Acid and the weaker conj. Base.

Starting with "Salts"

The amphiprotic ions are often products of the *dissociation* of salts.

- Spectator ions must be discarded.

NOTE: All alkali ions Na^+ , K^+ , Li^+ ...etc..... are *spectators* in Acid-Base reactions. Also top five ions right side of acid chart (CIO_4^- , Γ , Br^- , $C\Gamma$, NO_3^-) are *spectators* in Acid-Base reactions.

E.g.) complete the net ionic reaction between and state whether equilm favors reactants or products

HSO₃ is higher, so it will play the role of the **acid**.

$$HSO_3^- + HPO_4^{2-} \iff H_2PO_4^- + SO_3^{2-}$$

SrA B WrA B

 HSO_3^- is a stronger acid than $H_2PO_4^-$, so equilm favors the side with the *weaker* acid $(H_2PO_4^-)$ so *products* are favored!

Relating The Keq to A-B equilibria

If <u>products</u> are favored Keq is <u>large</u> (>1)
If <u>reactants</u> are favored Keq is <u>small</u> (<1)

Eg.) Given:

$$HA + B^- \leftrightarrows HB + A^- Keq = 0.003$$

Which acid is stronger, HA or HB?

Keq is *small* so *reactant* side is favored.

Since equilm favors side with WrA, HA must be the weaker acid, so HB would be the stronger acid.

- Which is the stronger base? Ans. _____ (the SrB is on the same side as the SrA) or

(the weaker acid (HA) has the stronger conj. Base (A⁻))

-Do Ex. 38 - 46 P. 133 of SW.