Ionization of Water

DEMONSTRATION OF CONDUCTIVITY OF TAP WATER AND DISTILLED WATER

- Pure distilled water still has a small conductivity. Why?
- There are a few ions present.
- Almost all the pure water is $\mathrm{H}_{2} \mathrm{O}$ molecules.
- But every once in a while, this happens:

A proton is transferred

> Hydronium Hydroxide

From one water molecule to another.

Equation:

$$
\frac{\mathrm{Or}}{2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \stackrel{\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}}{\rightleftarrows}}
$$

Process is Endothermic

All water or aqueous solutions contain these.

Since reaction is endothermic: $\quad 59 \mathrm{KJ}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}+\mathrm{OH}_{(\text {aq })}^{-}}{ }$

At higher temps \qquad are favoured and Kw is \qquad er.

At lower temps \qquad are favoured and Kw is \qquad er.

At $60^{\circ} \mathrm{C} \mathrm{Kw}=9.55 \times 10^{-14} \quad$ (larger)

So
Always: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$
At $\mathbf{2 5}^{0}$ C only: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& $\left[\mathrm{OH}^{-}\right]$in Neutral Water

At $25^{\circ} \mathrm{C}$ (NOTE: Assume Temp $=25^{\circ} \mathrm{C}$ unless otherwise noted)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$
and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$if water is neutral. (If "water" is mentioned in a problem, it can be assumed to be
(substitute. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{OH}^{-}\right]$)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=1.00 \times 10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{1.00 \times 10^{-14}}=\underline{1.00 \times 10^{-7} \mathrm{M}}$
Also $\quad\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\underline{1.00 \times 10^{-7}} \mathrm{M}$
At Higher Temp
Given: Kw at $60^{\circ} \mathrm{C}=9.55 \times 10^{-14}$
Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \&\left[\mathrm{OH}^{-}\right]$at $60^{\circ} \mathrm{C}$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$\& $\left[\mathrm{OH}^{-}\right]$in Acids and Bases

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

Add acid, $\mathrm{H}_{3} \mathrm{O}^{+}$increases, so equilibrium shifts LEFT and $\left[\mathrm{OH}^{-}\right]$decreases
All acids produce
$\mathrm{H}_{3} \mathrm{O}^{+}$in water
Add base, $\left[\mathrm{OH}^{-}\right]$increases, so the equilibrium shifts LEFT and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases.
Finding $\left[\mathrm{H}_{3} \underline{\left.\mathrm{O}^{+}\right] \text {and }\left[\mathrm{OH}^{-}\right] \text {in Acids and Bases }}\right.$
At $25^{\circ} \mathrm{C}$
Eg.) Find the $\left[\mathrm{OH}^{-}\right]$in 0.0100 M HCl

$$
\text { In a Strong Acid }\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\text {acid }]\right)
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0100 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$
$\left[\mathrm{OH}^{-}\right]=\frac{1.00 \times 10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.00 \times 10^{-14}}{1.00 \times 10^{-2}}=\underline{1.00 \times 10^{-12} \mathrm{M}}$
$\left[\mathrm{OH}^{-}\right]$is less in an acid than in neutral water.
Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.300 M NaOH .
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-14}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.00 \times 10^{-14}}{0.300}=\underline{3.33 \times 10^{-14}}
$$

Find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $0.020 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}<$ In a STRONG BASE, $\left[\mathrm{OH}^{-}\right]=[$base $]$x \# of OH 's

$$
\left[\mathrm{OH}^{-}\right]=?(\quad) \mathrm{M}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{()}=
$$

\qquad

At Other Temps

- you'd be given Kw
eg.) Kw at $60^{\circ} \mathrm{C}=9.55 \times 10^{-14}$
Calculate $\left[\mathrm{OH}^{-}\right]$in $0.00600 \mathrm{M} \mathrm{HNO}_{3}$ at $60^{\circ} \mathrm{C}$.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=9.55 \times 10^{-14}$

$$
\left[\mathrm{OH}^{-}\right]=\frac{9.55 \times 10^{-14}}{0.00600}=1.59 \times 10^{-11} \mathrm{M}
$$

Rd. pg. 126-127 Ex. 28-30 pg. 127 of SW.

pH

-Shorthand method of showing acidity (or basicity, alkalinity)
If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.10 \mathrm{M}\left(1.0 \times 10^{-1} \mathrm{M}\right) \mathrm{pH}=1.00$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.00010 \mathrm{M}\left(1.0 \times 10^{-4} \mathrm{M}\right) \mathrm{pH}=4.00$

Definition of pH

$\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad$ (assume $\log =\log _{10}$)

If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7}$
$\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)$
Regular Scientific Calculator. Enter: $1 \rightarrow$ EXP $\rightarrow 7 \rightarrow+/-\operatorname{LOG} \rightarrow+/-$ and the answer should be 7
For DAL (Sharp) calc. Enter: $+/-\rightarrow \log \rightarrow 1 \rightarrow \operatorname{Exp} \rightarrow+/-\rightarrow 7 \rightarrow=$ and the answer should be 7
For a TI 83 Enter (-) \rightarrow LOG $\rightarrow 1 \rightarrow 2^{\text {nd }} \rightarrow$ EE $\rightarrow(-) \rightarrow 7 \rightarrow$ ENTER and the answer should be 7

Use the $(-)$ button at the bottom right of the
white pad. NOT the "-" on the far right
NOTE: If you are using a DAL or a TI 83 calculator and the number you want to find the pH of is the answer to a an ongoing calculation, leave the answer to your calculation in the calculator and press $(-)$ or $+/-\rightarrow \log \rightarrow 2^{\text {nd }} \rightarrow$ ANS \rightarrow ENTER (or $=$).

Practice finding pH 's on your own calculator. You will be doing many of these in the rest of this unit and it's important that you can do it quickly and easily and accurately!

Find the pH of 0.030 M HCl

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.030 \mathrm{M}$
$\mathrm{pH}=-\log (0.030)=1.522878745$
How to round off??

Sig. Digits in pH start at decimal point!!!

..... so $\mathrm{pH}=1.52$

Find the pH of neutral water at $25^{\circ} \mathrm{C}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.00 \times 10^{-7}$
$\mathrm{pH}=7.000$
Find the pH of 0.00100 M NaOH at $25^{\circ} \mathrm{C}$

Basic solution
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{0.00100}=\underline{1.00 \times 10^{-11} \mathrm{M}}$
$\left[\mathrm{OH}^{-}\right]$

$$
\text { so } \mathrm{pH}=11.00
$$

At $25^{\circ} \mathrm{C}$

In neutral water	$\mathrm{pH}=\mathbf{7 . 0}$
In acid solution	$\mathrm{pH}<\mathbf{7 . 0}$
In basic solution	$\mathrm{pH}>\mathbf{7 . 0}$

pH Scale (@ $25^{\circ} \mathrm{C}$)

Calculate pH of 12.0 M HCl Very concentrated Acid!

Answer \qquad

Another example: Calculate the pH of 15.0 M NaOH :

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{15.0}=6.67 \times 10^{-16} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left(6.67 \times 10^{-16}\right)
$$

$$
\mathrm{pH}=\underline{15.176}
$$

Very concentrated Base

Converting pH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& -\mathrm{pH}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \text {antilog }(-\mathrm{pH})=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

or

eg.) If $\mathrm{pH}=11.612$, find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-11.612)$
For regular Scientific Calculator:
Enter: $11.612 \rightarrow+/-\rightarrow 2^{\text {nd }} \rightarrow \log \quad$ The calculator answer should be $2.443430553 \times 10^{-12}$
The original pH had 3 SD's, so the answer must also have 3 SD's (Remember the answer is NOT a pH, so digits to the LEFT of the decimal point are also significant!) . Remember that concentration also has a unit!. So the answer would be reported as:

For a DAL or TI 83 enter: $2^{\text {nd }} \rightarrow \log \rightarrow(-)($ or $+/-) \rightarrow 11.612 \rightarrow$ ENTER $($ or $=)$
If $\mathrm{pH}=3.924$ calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Logarithmic Nature of $\mathbf{p H}$

A change of 1 pH unit \rightarrow a factor of 10 in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or (acidity)
eg.)

How many times more acidic is pH 3 than pH 7 ?
pH 7
pH 3
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7}$
$x 10^{4}=10,000 x$
or taking antilog of difference in pH

$$
7-3=4
$$

antilog $4=10^{4}=10,000$ times
(remember lower pH more acidic)

Natural rainwater $\mathrm{pH} \sim 6$
Extremely acidic acid rain $\mathrm{pH} \sim 3 \quad$ diff $=3 \quad \& \operatorname{antilog}(3)=10^{3}(1,000)$
So, the acid rain is 1000 times more acidic than natural rain water!

pOH

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

And

$$
\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})
$$

Calculate the pOH of 0.0020 M KOH

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-3} \mathrm{M}} \\
& \mathrm{pOH}=-\log \left(2.0 \times 10^{-3}\right)=2.70
\end{aligned}
$$

Find the pH of the same solution:

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{2.0 \times 10^{-3}}=5.0 \times 10^{-12}} \\
& \mathrm{pH}=11.30
\end{aligned}
$$

Notice: $\mathrm{pH}+\mathrm{pOH}=\underline{14.00}$

From Math: If $\mathrm{a} x \quad \mathrm{~b}=\mathrm{c}$
Then: $\log _{\mathrm{a}}+\log _{\mathrm{b}}=\log _{\mathrm{c}}$
Eg.) $10 \mathrm{x} 100=1000$

$$
\begin{array}{cl}
\log (10)+\log (100) & =\log (1000) \\
1+2 & =3
\end{array}
$$

So since
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$
$\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]=\log (\mathrm{Kw})$
or make everything negative
$-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right]=-\log \mathrm{Kw}$

where $\quad \mathbf{p K w}=-\log \mathbf{K w}$ (definition of pKw)

Specifically at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{Kw}=1.00 \times 10^{-14} \\
& \mathrm{pKw}=-\log \left(1.00 \times 10^{-14}\right)
\end{aligned}
$$

$$
\mathrm{pKw}=14.000
$$

Only at $25^{\circ} \mathrm{C}$
so at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$
$\mathbf{p H}+\mathbf{p O H}=14.000$
At $25^{\circ} \mathrm{C}$ If $\mathrm{pH}=4.00 \mathrm{pOH}=10.00$

$$
\text { Or: If } \mathrm{pH}=2.963 \mathrm{pOH}=11.037
$$

eg.) Find the pH of $5.00 \times 10^{-4} \mathrm{M} \operatorname{LiOH}\left(25^{0} \mathrm{C}\right)$
plan: $\quad\left[\mathrm{OH}^{-}\right] \rightarrow \mathrm{pOH} \rightarrow \mathrm{pH}$
$\left[\mathrm{OH}^{-}\right]=5.00 \times 10^{-4} \rightarrow \mathrm{pOH}=3.301 \rightarrow \mathrm{pH}=14.000-3.301=\mathbf{1 0 . 6 9 9}$
eg.) Find the pOH of $0.0300 \mathrm{M} \mathrm{HBr}\left(25^{\circ} \mathrm{C}\right)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0300 \mathrm{M}$ (HBr is a strong acid)
$\mathrm{pH}=1.523$
$\mathrm{pOH}=14.000-1.523$
$\mathrm{pOH}=12.477$
See pOH scale \& pH scale. Pg. 140 S.W.

When not at $25^{\circ} \mathrm{C}$

Eg.) At $60^{\circ} \mathrm{C} \mathrm{Kw}=9.55 \times 10^{-14}$
Find the pH of neutral water at $60^{\circ} \mathrm{C}$.
One way: Calculate pKw
$\mathrm{pKw}=-\log \mathrm{Kw}=-\log \left(9.55 \times 10^{-14}\right)$
At $60^{\circ} \mathrm{C} \quad \mathrm{pKw}=13.020$
For $\underline{\text { neutral }}$ water $\mathrm{pH}=\mathrm{pOH} \quad\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]\right)$

$$
\begin{aligned}
& \mathrm{pH}+\mathrm{pOH}=\mathrm{pKw} \text { (substitute } \mathrm{pH} \text { for } \mathrm{pOH}) \\
& \mathrm{pH}+\mathrm{pH}=13.020 \\
& 2 \mathrm{pH}=13.020 \rightarrow \text { so } \mathrm{pH}=\frac{13.020}{2}=\mathbf{6 . 5 1 0}
\end{aligned}
$$

Is pH always 7.00 in neutral water? \qquad
At higher temp:

$$
2 \mathrm{H}_{2} \mathrm{O}+\text { heat } \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \quad$ so $\mathrm{pH}<7$
$\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$ so $\mathrm{pOH}<7$

Summary:

In neutral water $\mathrm{pH}=\mathrm{pOH}$ at any temp. $\mathrm{pH} \& \mathrm{pOH}=7.00$ at $25^{\circ} \mathrm{C}$ only.
At lower temps pH and pOH are >7
At higher temps pH and pOH are <7

Read p. 134-141 in SW.
Do ex. 49-53 + 55-57 (p. 139-141 S.W.)
Do Worksheet 4-3 pH and pOH Calculations

$\mathrm{K}_{\mathrm{a}} \boldsymbol{\&} \mathrm{K}_{\mathrm{b}}$ for Weak acids and Bases

Reminder: pH of SA's
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[$acid $] \quad$ strong means 100% ionized
so, to find pH of 0.100 M HCl

$$
\begin{aligned}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =0.100 \mathrm{M} \\
\mathbf{p H} & =\mathbf{1 . 0 0 0}
\end{aligned}
$$

For weak acids $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll$ [acid]
Eg.) What is pH of 0.10 M HF ?
$\underline{\text { Look at equilibrium for Weak Acid HF }}$

Keq $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$ for WA's Keq is called $\mathbf{K}_{\mathbf{a}}($ acid ionization constant $)$

- see acid table for list of Ka's.
higher $\mathrm{Ka} \rightarrow$ stronger acid
lower $\mathrm{Ka} \rightarrow$ weaker acid
For SA's (eg. HCl)

-Discuss Relative Strengths of Oxyacids

Calculations Using Ka (Used for Weak Acids)

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from $\mathrm{Ka}(\mathrm{pH}$ from Ka$)$

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from Ka and Original concentration (Co)

eg.) Find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 0.10 M HF

1. Write out equilibrium equation for ionization

$$
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \quad \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}
$$

2. Ice table

$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \underset{3}{\leftrightarrows} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$				
$[\mathrm{I}]$	0.10		0	0
$[\mathrm{C}]$	-x		+x	+x
$[\mathrm{E}]$	$0.10-\mathrm{x}$		x	x

3. Ka expression: $\mathrm{Ka}=\left[\mathrm{H}_{3} \underline{\left.\mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}\right.$

To avoid quadratic assume x is
In Chem. 12 with weak acids, always use this assumption - Make sure you state it!
$\mathrm{Ka}=\frac{(\mathrm{x})(\mathrm{x})}{0.10-\mathrm{x}} \underset{\text { This can be confirmed later. }}{ }$
4. Substitute

$$
\mathrm{Ka}=\frac{x^{2}}{0.100} \quad \text { So } x^{2}=0.10 \mathrm{Ka}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.9 \times 10^{-3} \mathrm{M}$
\sim Check assumption (we see that this is quite small compared to 0.10)
Do ex. 74 \& 75 Pg. 152

After Questions 74 \& 75

Short cut for multiple choice Only!!

Eg.) Find pH of 2.0 M acetic acid (Multiple Choice Question)

1. First $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathrm{C}_{\mathrm{o}} \mathrm{Ka}}$

2. Find $\mathrm{pH}=-\log \left(6.0 \times 10^{-3}\right)$

NOTE: Ions which act as acids can come from compounds.

Eg.) See table \sim ammonium ion $\mathrm{NH}_{4}{ }^{+}$

- can be found in $\mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{Br}$, etc....
ferric (hexaaquoiron) $\mathrm{Fe}^{3+}\left(\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\right.$) could be found in $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Br}_{3}$ (also called FeBr_{3}) or $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{3}$ (also called $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$)

Aluminum (hexaaquoaluminum) $\mathrm{Al}^{3+}\left(\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}\right)$ could be found in $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}$ (also called AlCl_{3})
Do ex. 79 \& 81, Pg. 152

More Ka Calculations:

Ka from pH

Eg.) a 0.350 M Solution of the weak acid HA has a pH of 1.620. Find the Ka of HA.

Now, you can see that the change in concentration [C] of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $+2.399 \times 10^{-2} \mathrm{M}$ and using the mole ratios (mole bridges) in the balanced equation, you can figure out the [C]'s for the A^{-}and the HA:

$-2.399 \times 10^{-2} \mathrm{M}$			$+2.399 \times 10^{-2} \mathrm{M}$	$+2.399 \times 10^{-2} \mathrm{M}$
	HA	$+\mathrm{H}_{2} \mathrm{O}$	$\stackrel{\mathrm{H}_{3} \mathrm{O}^{+}}{ }$	$+\quad \mathrm{A}^{-}$
[I]	0.350		0	0
[C]	-2.399×10^{-2}		$+2.399 \times 10^{-2}$	$+2.399 \times 10^{-2}$
[E]			2.399×10^{-2}	

Now, we can figure out the equilibrium concentrations of HA and A. There are no " x "s in the table so we don't need to make any assumptions. It is best to use your calculator to figure out the equilibrium [HA], because the [C] may or MAY NOT be insignificant. Using a calculator $0.350-2.399 \times 10^{-2}=0.32601$. Don't round it off too much here. I would keep it in a memory in my calculator. BUT BECAUSE THE " 0.350 " IS 3 DECIMAL PLACES AND YOU ARE SUBTRACTING, THE [E] OF "HA" CANNOT HAVE MORE THAN 3 DECIMAL PLACES (although you should use 0.32601 in your calculator) JUST REMEMBER THAT IN THE NEXT CALCULATION, THE 3 DECIMAL PLACES IN THE ICE TABLE TRANSLATES TO 3 SD'S, SO YOUR FINAL ANSWER CANNOT HAVE MORE THAN 3 SD'S.

$-2.399 \times 10^{-2} \mathrm{M}$				$+2.399 \times 10^{-2} \mathrm{M}$			$+2.399 \times 10^{-2} \mathrm{M}$
HA	$+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	+	A^{-}			
$[\mathrm{I}]$	0.350		0	0			
$[\mathrm{C}]$	-2.399×10^{-2}		$+2.399 \times 10^{-2}$	$+2.399 \times 10^{-2}$			
$[\mathrm{E}]$	0.326		2.399×10^{-2}	2.399×10^{-2}			

3. Write Ka expression \& substitute values.
$\mathrm{Ka}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}=\frac{\left(2.399 \times 10^{-2}\right)^{2}}{0.326}=1.7653 \times 10^{-3}$ and expressing in 3SD's, the answer is:
$\mathrm{Ka}=1.77 \times 10^{-3}$

For those that want a short-cut for multiple choice:

Ka from $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$:

Don't rearrange $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathrm{C}_{0} \mathrm{Ka}}$

Was derived using an assumption which may NOT be valid!

Do Ex. $77 \& 80$ on p. 152 SW

To Calculate Co (conc. of acid needed) form $\mathrm{pH} \& \mathrm{Ka}$

Eg. Find the concentration of HCOOH needed to form a solution with $\mathrm{pH}=2.69$

1. First change pH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})$
$=\operatorname{antilog}(-2.69)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.0417 \times 10^{-3} \mathrm{M}$ (notice that the given pH limits us to 2 SD's, but keep more in your calculations.)
2. Write out ionization equilibrium with an ICE TABLE. You can insert 2.0417×10^{-3} for equilibrium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. And since our unknown is the initial [HCOOH], we put in an " C_{o} " for the [I] of HCOOH :

$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$			$\mathrm{H}_{3} \mathrm{O}^{+}+$	HCOO^{-}
$[\mathrm{I}]$	C_{0}		0	0
$[\mathrm{C}]$				
$[\mathrm{E}]$			2.0417×10^{-3}	

Now we can see that the change in concentration $[\mathrm{C}]$ of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is " $+2.0417 \times 10^{-3}$ " and the $[\mathrm{C}]$ of HCOO^{-} will be the same. The [C] of HCOOH will be " -2.0417×10^{-3} "

$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$		$\mathrm{H}_{3} \mathrm{O}^{+}$	+	HCOO^{-}
$[\mathrm{I}]$	C_{o}		0	0
$[\mathrm{C}]$	-2.0417×10^{-3}		$+2.0417 \times 10^{-3}$	$+2.0417 \times 10^{-3}$
$[\mathrm{E}]$			2.0417×10^{-3}	

We can now calculate the equilibrium concentrations [E] of HCOOH and HCOO^{-}.

$\mathrm{HCOOH}+\mathrm{H} \mathrm{O}$				
$[\mathrm{I}]$	C_{o}	$\mathrm{H}_{3} \mathrm{O}^{+}$	+	HCOO^{-}
$[\mathrm{C}]$	-2.0417×10^{-3}		0	0
$[\mathrm{E}]$	$\mathrm{C}_{0}-2.0417 \times 10^{-3}$		2.0417×10^{-3}	$+2.0417 \times 10^{-3}$

The next step will be to write the K_{a} expression and substitute the equilibrium concentrations in:
3. Write Ka expression. Substitute equilibrium concentrations in. Find Ka for HCOOH on the acid table:

$1.8 \times 10^{-4}=\frac{\left(2.0417 \times 10^{-3}\right)^{2}}{\left(\mathrm{Co}-2.0417 \times 10^{-3}\right)}$
Now we can solve for Co (the original concentration of the acid):
Co- $2.0417 \times 10^{-3}=\frac{\left(2.0417 \times 10^{-3}\right)^{2}}{1.8 \times 10^{-4}}$
$\mathrm{Co}-2.0417 \times 10^{-3}=2.3159 \times 10^{-2}$
$\mathrm{Co}=2.3159 \times 10^{-2}+2.0417 \times 10^{-3}$
$\mathrm{Co}=2.52 \times 10^{-2} \mathrm{M}$
$\mathbf{C o}=2.5 \times 10^{-2} \mathbf{M}$ or $\mathbf{0 . 0 2 5} \mathbf{M}$ (remember, we are restricted to $2 \mathrm{SD}^{\prime} \mathrm{s}$)
Do Ex. 76 \& 78 on p. 152 of SW.

Now For Bases

Base ionization $\mathrm{NH}_{3} \rightarrow$ very common weak base. It partially ionizes in water to form NH_{4}^{+}and OH^{-}:
$\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})}^{-}$
Equilibrium constant - called base ionization constant (Kb)
$\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrows \mathrm{NH}_{4}{ }^{+}\left(\mathrm{aq)}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right.$
Kb expression: $\mathrm{Kb}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{NH}_{3}\right]$
 Equilibrium constant is still called Kb .

Eg.) Hydrolysis of CN^{-}

Ionization of $\mathrm{N}_{2} \mathrm{H}_{4}$ (weak base)

How to Find Kb using Acid Table

(not shown directly)
Derivation

- Look at hydrolysis of base $\mathrm{F}^{-}: \quad \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HF}+\mathrm{OH}^{-}$
$\mathrm{Kb}_{(\mathrm{F}-)}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}$
- Look at ionization the weak acid HF: $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
$\mathrm{Ka}_{(\mathrm{HF})}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}$

$\left.\mathrm{Ka}_{[\mathrm{HF}]} \times \mathrm{Kb}_{[\mathrm{F}]}^{-}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]} \times \frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$(notice that [HF] and $\left[\mathrm{F}^{-}\right]$will cancel.)
or

$$
\mathbf{K} \mathbf{a}_{(\mathbf{H F})} \times \mathbf{K b}_{(\mathbf{F})}^{-}=\mathbf{K w}
$$

$\mathrm{Ka}_{(\mathrm{HF})} \times \mathrm{Kb}_{(\mathrm{F})}^{-}=\mathrm{Kw}$
Or $\mathrm{Kb}_{(\mathrm{F})}{ }^{-}=\frac{\mathrm{Kw}}{\mathrm{Ka}_{(\mathrm{HF})}}$
In general:

$$
\mathbf{K} \mathbf{b}_{(\text {weak base })}=\mathbf{K w}_{\mathbf{K} \mathbf{a}_{(\mathbf{i t} \text { 's conj. acid })}}
$$

Using Acid Table:

1. Find base on right side (if amphiprotic -locate base on right side only)
2. It's conjugate acid will be across from it on the left side.
3. The Ka of it's conjugate acid is on the far right of the same line.
4. Use equation: $\mathrm{Kb}_{(\text {base })}=\underline{\mathrm{Kw}}$

Ka (conj. acid)
Eg.) Calculate the Kb for $\mathrm{HCO}_{3}{ }^{-}$: (find HCO_{3}^{-}on $\underline{\text { RIGHT SIDE) }}$

$\mathrm{Kb}\left(\mathrm{HCO}_{3}^{-}\right)=\frac{\mathrm{Kw}}{\mathrm{Ka}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)}=\frac{1.0 \times 10^{-14}}{4.3 \times 10^{-7}}=2.3 \times 10^{-8}$
Find Kb of $\mathrm{SO}_{3}{ }^{2-}$

Similarly : If Kb (base) given

$$
\mathrm{Ka}(\text { weak acid })=\underline{\mathrm{Kw}}
$$ $\overline{\mathrm{Kb}}$ (it's conj. Base)

Eg.) The Kb for base B^{-}is 2.73×10^{-9}
Find the Ka for the acid HB
$K \mathrm{a}_{(\mathrm{HB})}=\frac{\text { 3 sig. Digs. }}{\left.\mathrm{Kb}_{(\mathrm{B})}^{-}\right)}=\frac{1.00 \times 10^{-14}}{2.73 \times 10^{-9}}=\underline{3.66 \times 10^{-6}}$

NOTES:
$>$ Table only states Ka values. For questions like this Kb will have to be calculated if not given.
$>$ All Ka's on table are 2 SD's-limits any calculation using them to 2 SD's maximum.
$>$ The larger the Kb , the "stronger " the weak base - the more OH^{-}produced.
$>$ The smaller the Ka of an acid, the larger the Kb of its conjugate Base. (Weaker acids have stronger conjugate bases)

Calculations Involving Kb

Given:

$[$ Base $] \& \mathrm{~Kb}$$\rightarrow$| Find |
| :--- |
| $\left[\mathrm{OH}^{-}\right]$ |\rightarrow| or find |
| :---: |
| pOH |\rightarrow| or find |
| :---: |
| pH |

eg.) Find $\left[\mathrm{OH}^{-}\right]$in a 0.20 M solution of KNO_{2} (this is a salt, so it must be dissociated into it's ions first)
Dissociation of $\mathrm{KNO}_{2} \rightarrow \mathrm{~K}^{+}+\mathrm{NO}_{2}^{-}$

2. Hydrolysis (if ion) or ionization (if molecule) equation followed by an ICE table:

$\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$				
$[\mathrm{I}]$	0.20	HNO_{2}	+	OH^{-}
$[\mathrm{C}]$			0	0
$[\mathrm{E}]$				

We can let "x" equal the moles/ L of $\mathrm{NO}_{2}{ }^{-}$which hydrolyze as the reaction reaches equilibrium. Using the mole ratios in the equation and calculating [E]'s we get:

$\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$				
$[\mathrm{I}]$	0.20	HNO_{2}	+	OH^{-}
$[\mathrm{C}]$	-x		0	0
$[\mathrm{E}]$	$\mathbf{0 . 2 0}-\mathbf{x}$		+x	+x

3. $\underline{K}_{\underline{b}}$ Expression:
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}$at equilibrium [$\mathrm{NO}_{2}{ }^{-}$]

On the next page, we substitute the [E]'s into the Kb expression (Don't forget, we are in "baseland" not "acidland" now!)

Substitute: $\quad \mathrm{Kb}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}{ }^{-}\right]} \quad$ or $\quad \mathrm{Kb}=\frac{\mathrm{x}^{2}}{(0.20-\mathrm{x})}$

Approximation:

$\mathrm{Kb} \cong \frac{\mathrm{x}^{2}}{0.20}$
$\mathrm{x}^{2}=0.20 \mathrm{~K}_{\mathrm{b}}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{0.20 \mathrm{~Kb}}$
$\left[\mathrm{OH}^{-}\right]=\sqrt{0.20\left(2.174 \times 10^{-11}\right)}$
$\left[\mathrm{OH}^{-}\right]=2.085 \times 10^{-6} \mathrm{M}$
$\left[\mathbf{O H}^{-}\right]=\mathbf{2 . 1} \times \mathbf{1 0}^{-6} \mathbf{M} \quad$ Both the 0.20 M and the Ka used in calculating Kb limit us to 2 SD's.

NOTE: In many problems, finding $\left[\mathrm{OH}^{-}\right]$is only the first step. Often you have to find the pH . Then you would use the process $\left[\mathrm{OH}^{-}\right] \rightarrow \mathrm{pOH} \rightarrow \mathrm{pH}$

$\underline{\text { Kb From } \mathrm{pH} \text { and Concentration }}$

Eg.) At a certain temp, a 0.20 M solution of $\mathrm{K}_{2} \mathrm{SO}_{3}$ has a pH of 10.25 . Calculate the Kb of $\mathrm{SO}_{3}{ }^{2-}$ at this temp.

1. Identify $\mathrm{SO}_{3}{ }^{2-}$ as a weak base (When $\mathrm{K}_{2} \mathrm{SO}_{3}$ is dissociated, it yields $\mathrm{K}^{+}\left(\right.$a spectator) and $\mathrm{SO}_{3}{ }^{2-}$)
2. $\left[\mathrm{OH}^{-}\right]$can be obtained from $\mathrm{pH} \quad\left(\mathrm{pH} \rightarrow \mathrm{pOH} \rightarrow\left[\mathrm{OH}^{-}\right]\right)$
$\mathrm{pH}=10.25$ so $\mathrm{pOH}=14.00-10.25=3.75$
$\left[\mathrm{OH}^{-}\right]=\operatorname{antilog}(-\mathrm{pOH})=\operatorname{antilog}(-3.75)=\underline{1.778 \times 10^{-4} \mathrm{M}}$
3. Write hydrolysis equation and an ICE table. (It is called hydrolysis this time because $\mathrm{SO}_{3}{ }^{2-}$ is an ion.) We know the initial $\left[\mathrm{SO}_{3}{ }^{2-}\right]$ is 0.20 M and the equilibrium $\left[\mathrm{OH}^{-}\right]$is $1.778 \times 10^{-4} \mathrm{M}$:

$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$				$\mathrm{HSO}_{3}{ }^{-}$
$[\mathrm{I}]$	0.20		0	OH^{-}
$[\mathrm{C}]$				0
$[\mathrm{E}]$				1.778×10^{-4}

So, from this, the change in conc. [C] of $\mathrm{OH}^{\text {" }}$ is " $+1.778 \times 10^{-4}$ " and using the coefficient ratios we can insert the [C]'s for the other species and calculate the equilibrium concentrations [E]'s:

$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{HSO}_{3} \leftrightarrows+\mathrm{OH}^{-}$				
$[\mathrm{I}]$	0.20		0	0
$[\mathrm{C}]$	-1.778×10^{-4}		$+1.778 \times 10^{-4}$	$+1.778 \times 10^{-4}$
$[\mathrm{E}]$	$\mathbf{0 . 1 9 9 8}$		$\mathbf{1 . 7 7 8 \times 1 0 \times 1 0}$	$\mathbf{1 . 7 7 8 \times 1 0} \mathbf{1 0}^{-4}$

4. Now we write the Kb expression and substitute the values from the [E]'s in our ICE table:

- Do worksheet on Ka, Kb calculations

